.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_calibration/bayesian_calibration/plot_bayesian_calibration.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_calibration_bayesian_calibration_plot_bayesian_calibration.py: Bayesian calibration of a computer code ======================================= .. GENERATED FROM PYTHON SOURCE LINES 6-84 In this example we are going to compute the parameters of a computer model thanks to Bayesian estimation. Let us denote :math:`(y_1, \dots, y_n)` the observation sample, :math:`(\vect z_1, \ldots, \vect z_n) = (f(x_1|\vect\theta), \ldots, f(x_n|\vect\theta))` the model prediction, :math:`p(y |\vect z)` the density function of observation :math:`y` conditional on model prediction :math:`\vect z`, and :math:`\vect\theta \in \mathbb{R}^p` the calibration parameters we wish to estimate. The posterior distribution is given by Bayes theorem: .. math::\pi(\vect\theta | \vect y) \quad \propto \quad L\left(\vect y | \vect\theta\right) \times \pi(\vect\theta):math:`` where :math:`\propto` means "proportional to", regarded as a function of :math:`\vect\theta`. The posterior distribution is approximated here by the empirical distribution of the sample :math:`\vect\theta^1, \ldots, \vect\theta^N` generated by the Metropolis-Hastings algorithm. This means that any quantity characteristic of the posterior distribution (mean, variance, quantile, ...) is approximated by its empirical counterpart. Our model (i.e. the compute code to calibrate) is a standard normal linear regression, where .. math:: y_i = \theta_1 + x_i \theta_2 + x_i^2 \theta_3 + \varepsilon_i where :math:`\varepsilon_i \stackrel{i.i.d.}{\sim} \mathcal N(0, 1)`. The "true" value of :math:`\theta` is: .. math:: \vect \theta_{true} = (-4.5,4.8,2.2)^T. We use a normal prior on :math:`\vect\theta`: .. math:: \pi(\vect\theta) = \mathcal N(\vect{\mu}_\vect{\theta}, \mat{\Sigma}_\vect{\theta}) where .. math:: \vect{\mu}_\vect{\theta} = \begin{pmatrix} -3 \\ 4 \\ 1 \end{pmatrix} is the mean of the prior and .. math:: \mat{\Sigma}_\vect{\theta} = \begin{pmatrix} \sigma_{\theta_1}^2 & 0 & 0 \\ 0 & \sigma_{\theta_2}^2 & 0 \\ 0 & 0 & \sigma_{\theta_3}^2 \end{pmatrix} is the prior covariance matrix with .. math:: \sigma_{\theta_1} = 2, \qquad \sigma_{\theta_2} = 1, \qquad \sigma_{\theta_3} = 1.5. The following objects need to be defined in order to perform Bayesian calibration: - The conditional density :math:`p(y|\vect z)` must be defined as a probability distribution. - The computer model must be implemented thanks to the ParametricFunction class. This takes a value of :math:`\vect\theta` as input, and outputs the vector of model predictions :math:`\vect z`, as defined above (the vector of covariates :math:`\vect x = (x_1, \ldots, x_n)` is treated as a known constant). When doing that, we have to keep in mind that :math:`\vect z` will be used as the vector of parameters corresponding to the distribution specified for :math:`p(y |\vect z)`. For instance, if :math:`p(y|\vect z)` is normal, this means that :math:`\vect z` must be a vector containing the mean and standard deviation of :math:`y`. - The prior density :math:`\pi(\vect\theta)` encoding the set of possible values for the calibration parameters, each value being weighted by its a priori probability, reflecting the beliefs about the possible values of :math:`\vect\theta` before consideration of the experimental data. Again, this is implemented as a probability distribution. - Metropolis-Hastings algorithm(s), possibly used in tandem with a Gibbs algorithm in order to sample from the posterior distribution of the calibration parameters. .. GENERATED FROM PYTHON SOURCE LINES 86-93 .. code-block:: Python import pylab as pl import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 94-95 Dimension of the vector of parameters to calibrate .. GENERATED FROM PYTHON SOURCE LINES 95-99 .. code-block:: Python paramDim = 3 # The number of obesrvations obsSize = 10 .. GENERATED FROM PYTHON SOURCE LINES 100-101 Define the observed inputs :math:`x_i`. .. GENERATED FROM PYTHON SOURCE LINES 103-109 .. code-block:: Python xmin = -2.0 xmax = 3.0 step = (xmax - xmin) / (obsSize - 1) rg = ot.RegularGrid(xmin, step, obsSize) x_obs = rg.getVertices() .. GENERATED FROM PYTHON SOURCE LINES 110-116 Define the parametric model :math:`\vect z = f(x,\vect\theta)` that associates each observation :math:`x` and value of :math:`\vect \theta` to the parameters of the distribution of the corresponding observation :math:`y`: here :math:`\vect z=(\mu, \sigma)` where :math:`\mu`, the first output of the model, is the mean and :math:`\sigma`, the second output of the model, is the standard deviation. .. GENERATED FROM PYTHON SOURCE LINES 118-122 .. code-block:: Python fullModel = ot.SymbolicFunction( ["x", "theta1", "theta2", "theta3"], ["theta1+theta2*x+theta3*x^2", "1.0"] ) .. GENERATED FROM PYTHON SOURCE LINES 123-130 To differentiate between the two classes of inputs (:math:`x` and :math:`\vect\theta`), we define a :class:`~openturns.ParametricFunction` from `fullModel` and make the first input (the observations :math:`x`) its *parameter*: :math:`f_x(\vect \theta) := f(x, \vect \theta)`. We set :math:`x = 1` as a placeholder, but :math:`x` will actually take the values :math:`x_i` of the observations when we sample :math:`\vect\theta`. .. GENERATED FROM PYTHON SOURCE LINES 130-134 .. code-block:: Python linkFunction = ot.ParametricFunction(fullModel, [0], [1.0]) print(linkFunction) .. rst-class:: sphx-glr-script-out .. code-block:: none ParametricEvaluation([x,theta1,theta2,theta3]->[theta1+theta2*x+theta3*x^2,1.0], parameters positions=[0], parameters=[x : 1], input positions=[1,2,3]) .. GENERATED FROM PYTHON SOURCE LINES 135-136 Define the observation noise :math:`\varepsilon {\sim} \mathcal N(0, 1)` and create a sample from it. .. GENERATED FROM PYTHON SOURCE LINES 138-143 .. code-block:: Python ot.RandomGenerator.SetSeed(0) noiseStandardDeviation = 1.0 noise = ot.Normal(0, noiseStandardDeviation) noiseSample = noise.getSample(obsSize) .. GENERATED FROM PYTHON SOURCE LINES 144-146 Define the vector of observations :math:`y_i`, here sampled using the "true" value of :math:`\vect \theta`: :math:`\vect \theta_{true}`. .. GENERATED FROM PYTHON SOURCE LINES 148-150 .. code-block:: Python thetaTrue = [-4.5, 4.8, 2.2] .. GENERATED FROM PYTHON SOURCE LINES 151-156 .. code-block:: Python y_obs = ot.Sample(obsSize, 1) for i in range(obsSize): linkFunction.setParameter(x_obs[i]) y_obs[i, 0] = linkFunction(thetaTrue)[0] + noiseSample[i, 0] .. GENERATED FROM PYTHON SOURCE LINES 157-158 Draw the model predictions vs the observations. .. GENERATED FROM PYTHON SOURCE LINES 160-170 .. code-block:: Python functionnalModel = ot.ParametricFunction(fullModel, [1, 2, 3], thetaTrue) graphModel = functionnalModel.getMarginal(0).draw(xmin, xmax) observations = ot.Cloud(x_obs, y_obs) observations = ot.Cloud(x_obs, y_obs) observations.setColor("red") graphModel.add(observations) graphModel.setLegends(["Model", "Observations"]) graphModel.setLegendPosition("topleft") view = viewer.View(graphModel) .. image-sg:: /auto_calibration/bayesian_calibration/images/sphx_glr_plot_bayesian_calibration_001.png :alt: y0 as a function of x :srcset: /auto_calibration/bayesian_calibration/images/sphx_glr_plot_bayesian_calibration_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 171-174 Define the distribution of observations :math:`y | \vect{z}` conditional on model predictions. Note that its parameter dimension is the one of :math:`\vect{z}`, so the model must be adjusted accordingly. .. GENERATED FROM PYTHON SOURCE LINES 176-178 .. code-block:: Python conditional = ot.Normal() .. GENERATED FROM PYTHON SOURCE LINES 179-180 Define the mean :math:`\mu_\theta`, the covariance matrix :math:`\Sigma_\theta`, then the prior distribution :math:`\pi(\vect\theta)` of the parameter :math:`\vect\theta`. .. GENERATED FROM PYTHON SOURCE LINES 182-184 .. code-block:: Python thetaPriorMean = [-3.0, 4.0, 1.0] .. GENERATED FROM PYTHON SOURCE LINES 185-193 .. code-block:: Python sigma0 = [2.0, 1.0, 1.5] # standard deviations thetaPriorCovarianceMatrix = ot.CovarianceMatrix(paramDim) for i in range(paramDim): thetaPriorCovarianceMatrix[i, i] = sigma0[i] ** 2 prior = ot.Normal(thetaPriorMean, thetaPriorCovarianceMatrix) prior.setDescription(["theta1", "theta2", "theta3"]) .. GENERATED FROM PYTHON SOURCE LINES 194-197 The proposed steps for :math:`\theta_1`, :math:`\theta_2` and :math:`\theta_3` will all follow a uniform distribution. .. GENERATED FROM PYTHON SOURCE LINES 197-200 .. code-block:: Python proposal = ot.Uniform(-1.0, 1.0) .. GENERATED FROM PYTHON SOURCE LINES 201-203 Test the Metropolis-Hastings sampler ------------------------------------ .. GENERATED FROM PYTHON SOURCE LINES 205-207 Creation of a single component random walk Metropolis-Hastings (RWMH) sampler. This involves a combination of the RWMH and the Gibbs algorithms. .. GENERATED FROM PYTHON SOURCE LINES 209-211 .. code-block:: Python initialState = thetaPriorMean .. GENERATED FROM PYTHON SOURCE LINES 212-215 We create a :class:`~openturns.RandomWalkMetropolisHastings` sampler for each component. Each sampler must be aware of the joint prior distribution. We also use the same proposal distribution, but this is not mandatory. .. GENERATED FROM PYTHON SOURCE LINES 215-221 .. code-block:: Python mh_coll = [ ot.RandomWalkMetropolisHastings(prior, initialState, proposal, [i]) for i in range(paramDim) ] .. GENERATED FROM PYTHON SOURCE LINES 222-224 Each sampler must be made aware of the likelihood. Otherwise we would sample from the prior! .. GENERATED FROM PYTHON SOURCE LINES 224-228 .. code-block:: Python for mh in mh_coll: mh.setLikelihood(conditional, y_obs, linkFunction, x_obs) .. GENERATED FROM PYTHON SOURCE LINES 229-230 Finally, the :class:`~openturns.Gibbs` algorithm is constructed from all Metropolis-Hastings samplers. .. GENERATED FROM PYTHON SOURCE LINES 230-233 .. code-block:: Python sampler = ot.Gibbs(mh_coll) .. GENERATED FROM PYTHON SOURCE LINES 234-235 Generate a sample from the posterior distribution of the parameters :math:`\vect \theta`. .. GENERATED FROM PYTHON SOURCE LINES 237-240 .. code-block:: Python sampleSize = 10000 sample = sampler.getSample(sampleSize) .. GENERATED FROM PYTHON SOURCE LINES 241-244 Look at the acceptance rate (basic check of the sampling efficiency: values close to :math:`0.2` are usually recommended for Normal posterior distributions). .. GENERATED FROM PYTHON SOURCE LINES 246-248 .. code-block:: Python [mh.getAcceptanceRate() for mh in sampler.getMetropolisHastingsCollection()] .. rst-class:: sphx-glr-script-out .. code-block:: none [0.282, 0.2944, 0.3035] .. GENERATED FROM PYTHON SOURCE LINES 249-250 Build the distribution of the posterior by kernel smoothing. .. GENERATED FROM PYTHON SOURCE LINES 252-255 .. code-block:: Python kernel = ot.KernelSmoothing() posterior = kernel.build(sample) .. GENERATED FROM PYTHON SOURCE LINES 256-257 Display prior vs posterior for each parameter. .. GENERATED FROM PYTHON SOURCE LINES 259-274 .. code-block:: Python fig = pl.figure(figsize=(12, 4)) for parameter_index in range(paramDim): graph = posterior.getMarginal(parameter_index).drawPDF() priorGraph = prior.getMarginal(parameter_index).drawPDF() priorGraph.setColors(["blue"]) graph.add(priorGraph) graph.setLegends(["Posterior", "Prior"]) ax = fig.add_subplot(1, paramDim, parameter_index + 1) _ = ot.viewer.View(graph, figure=fig, axes=[ax]) _ = fig.suptitle("Bayesian calibration") plt.show() .. image-sg:: /auto_calibration/bayesian_calibration/images/sphx_glr_plot_bayesian_calibration_002.png :alt: Bayesian calibration :srcset: /auto_calibration/bayesian_calibration/images/sphx_glr_plot_bayesian_calibration_002.png :class: sphx-glr-single-img .. _sphx_glr_download_auto_calibration_bayesian_calibration_plot_bayesian_calibration.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_bayesian_calibration.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_bayesian_calibration.py `