.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_probabilistic_modeling/stochastic_processes/plot_timeseries_manipulation.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_probabilistic_modeling_stochastic_processes_plot_timeseries_manipulation.py: Manipulate a time series ======================== .. GENERATED FROM PYTHON SOURCE LINES 6-21 The objective here is to create and manipulate a time series. A time series is a particular field where the mesh :math:`\mathcal{M}` 1-d and regular, eg a time grid :math:`(t_0, \dots, t_{N-1})`. It is possible to draw a time series, using interpolation between the values: see the use case on the Field. A time series can be obtained as a realization of a multivariate stochastic process :math:`X: \Omega \times [0,T] \rightarrow \mathbb{R}^d` of dimension :math:`d` where :math:`[0,T]` is discretized according to the regular grid :math:`(t_0, \dots, t_{N-1})`. The values :math:`(\underline{x}_0, \dots, \underline{x}_{N-1})` of the time series are defined by: .. math:: \forall i \in [0, N-1],\quad \underline{x}_i= X(\omega)(t_i) A time series is stored in the **TimeSeries** object that stores the regular time grid and the associated values. .. GENERATED FROM PYTHON SOURCE LINES 23-29 .. code-block:: Python import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 30-31 Create the RegularGrid .. GENERATED FROM PYTHON SOURCE LINES 31-36 .. code-block:: Python tMin = 0.0 timeStep = 0.1 N = 100 myTimeGrid = ot.RegularGrid(tMin, timeStep, N) .. GENERATED FROM PYTHON SOURCE LINES 37-39 Case 1: Create a time series from a time grid and values Care! The number of steps of the time grid must correspond to the size of the values .. GENERATED FROM PYTHON SOURCE LINES 39-43 .. code-block:: Python myValues = ot.Normal(3).getSample(myTimeGrid.getVertices().getSize()) myTimeSeries = ot.TimeSeries(myTimeGrid, myValues) myTimeSeries .. raw:: html
class=TimeSeries name=Unnamed derived from=class=FieldImplementation name=Unnamed mesh=class=Mesh name=Unnamed dimension=1 vertices=class=Sample name=Unnamed implementation=class=SampleImplementation name=Unnamed size=100 dimension=1 description=[t] data=[[0],[0.1],[0.2],[0.3],[0.4],[0.5],[0.6],[0.7],[0.8],[0.9],[1],[1.1],[1.2],[1.3],[1.4],[1.5],[1.6],[1.7],[1.8],[1.9],[2],[2.1],[2.2],[2.3],[2.4],[2.5],[2.6],[2.7],[2.8],[2.9],[3],[3.1],[3.2],[3.3],[3.4],[3.5],[3.6],[3.7],[3.8],[3.9],[4],[4.1],[4.2],[4.3],[4.4],[4.5],[4.6],[4.7],[4.8],[4.9],[5],[5.1],[5.2],[5.3],[5.4],[5.5],[5.6],[5.7],[5.8],[5.9],[6],[6.1],[6.2],[6.3],[6.4],[6.5],[6.6],[6.7],[6.8],[6.9],[7],[7.1],[7.2],[7.3],[7.4],[7.5],[7.6],[7.7],[7.8],[7.9],[8],[8.1],[8.2],[8.3],[8.4],[8.5],[8.6],[8.7],[8.8],[8.9],[9],[9.1],[9.2],[9.3],[9.4],[9.5],[9.6],[9.7],[9.8],[9.9]] simplices=[[0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11],[11,12],[12,13],[13,14],[14,15],[15,16],[16,17],[17,18],[18,19],[19,20],[20,21],[21,22],[22,23],[23,24],[24,25],[25,26],[26,27],[27,28],[28,29],[29,30],[30,31],[31,32],[32,33],[33,34],[34,35],[35,36],[36,37],[37,38],[38,39],[39,40],[40,41],[41,42],[42,43],[43,44],[44,45],[45,46],[46,47],[47,48],[48,49],[49,50],[50,51],[51,52],[52,53],[53,54],[54,55],[55,56],[56,57],[57,58],[58,59],[59,60],[60,61],[61,62],[62,63],[63,64],[64,65],[65,66],[66,67],[67,68],[68,69],[69,70],[70,71],[71,72],[72,73],[73,74],[74,75],[75,76],[76,77],[77,78],[78,79],[79,80],[80,81],[81,82],[82,83],[83,84],[84,85],[85,86],[86,87],[87,88],[88,89],[89,90],[90,91],[91,92],[92,93],[93,94],[94,95],[95,96],[96,97],[97,98],[98,99]] values=class=Sample name=Normal implementation=class=SampleImplementation name=Normal size=100 dimension=3 description=[X0,X1,X2] data=[[1.01189,-0.608942,0.259667],[0.324782,0.541045,0.124925],[0.63389,0.71797,0.204209],[-0.230565,-0.441029,0.218173],[0.358047,0.389048,0.0223299],[1.65473,0.718066,1.20039],[-0.0428541,0.299168,-1.95814],[0.342204,-0.822006,0.414328],[-0.336382,1.84368,-0.637582],[0.411799,-0.176888,-1.10384],[-0.414421,0.266101,-0.340295],[0.716981,-0.624488,1.48763],[-0.235484,0.22803,-0.8464],[-0.0506129,0.963482,-0.266606],[0.718303,-1.35427,-0.399967],[0.827442,-1.60123,-0.789026],[-0.470555,-1.17375,-1.17225],[1.44633,-0.0109896,-0.392194],[0.423681,-0.215168,-1.36186],[0.653895,1.87561,-0.402469],[0.623307,-0.207295,1.17231],[0.2915,-2.07544,-0.229841],[0.93204,-2.89787,-0.485802],[-0.315465,0.563317,-1.54763],[1.74913,-0.711751,0.120468],[0.85627,0.591214,-1.07519],[-0.751024,-0.550295,-1.29029],[0.776951,0.556825,-0.989392],[2.2382,-0.015504,0.87992],[1.10091,-1.08794,1.28143],[0.770213,-1.11943,0.361488],[-1.43777,0.192138,-1.69362],[1.48814,-0.979175,-1.66438],[2.75891,-0.0568873,-0.517364],[0.0644103,-0.497525,-1.67019],[-0.527852,1.15265,0.156536],[-0.790078,0.119299,-1.69795],[-0.4429,-0.541246,-1.35629],[-0.549982,-1.22042,-0.177045],[1.70917,-0.636661,0.218454],[0.448041,1.22407,-0.239304],[-0.437019,-0.533459,0.430689],[-0.549999,-0.920782,-2.35124],[-0.956058,0.943051,0.725423],[0.103282,0.516111,2.00502],[1.63507,-1.43977,0.529791],[1.03687,-0.444105,-0.753347],[0.100154,-0.550234,1.41372],[0.464214,0.447407,-1.05761],[1.35995,-0.710775,-0.164241],[-1.28354,0.556653,0.548566],[1.68737,0.79344,-0.540027],[-0.848387,-0.103264,0.958601],[-1.02522,-0.354939,-0.869302],[0.266897,0.296524,-2.24114],[-1.5607,-2.272,0.722451],[-2.16128,-0.32861,1.06975],[-1.77994,-0.832708,-0.245372],[-0.0205006,-0.170101,0.529296],[-0.725104,-1.16247,0.199523],[0.727148,-0.260688,-0.136772],[0.52023,-0.659133,-0.180673],[-1.04885,0.512371,0.20648],[-0.960832,0.414682,-1.22871],[2.57497,-0.00804901,-1.8859],[0.830757,-0.378346,0.479046],[1.60938,-0.570841,0.269096],[0.803503,0.583218,0.449756],[-0.693556,1.89666,0.0270818],[-0.258272,-0.37012,0.0456596],[-0.343048,-0.392484,-2.41093],[1.93921,-0.590044,0.22705],[-0.141765,0.855507,0.286761],[0.564812,-0.509701,1.40334],[-1.37852,0.434035,0.0342518],[0.896116,-0.870577,1.36995],[0.272597,0.579223,-1.5321],[0.957065,0.427663,-0.36668],[0.648699,-0.00464944,0.171548],[-0.0795761,0.455389,-2.14009],[0.933245,0.818686,-1.54826],[0.370246,-0.773089,-0.0129833],[0.187309,-2.13145,-1.19768],[-0.00500185,-0.125673,-1.89201],[3.40565,-0.103576,0.415448],[0.727255,0.978855,1.15808],[0.295275,0.283934,1.29426],[0.200773,0.342265,0.164085],[-0.608383,0.144346,0.537733],[0.696557,1.18791,2.18097],[-0.194809,0.628316,0.230866],[-0.648071,-0.0280203,0.871005],[1.24473,-0.106358,-0.234489],[-2.0102,0.121701,-1.33163],[-0.825457,-1.21658,-1.02579],[-1.22486,-0.735057,0.267431],[-0.313967,0.328403,-1.18542],[0.272577,-0.537997,-0.154628],[0.0348939,0.357208,0.87381],[-1.4897,-1.60323,0.276884]] start=0 timeStep=0.1 n=100


.. GENERATED FROM PYTHON SOURCE LINES 44-45 Case 2: Get a time series from a Process .. GENERATED FROM PYTHON SOURCE LINES 45-49 .. code-block:: Python myProcess = ot.WhiteNoise(ot.Normal(3), myTimeGrid) myTimeSeries2 = myProcess.getRealization() myTimeSeries2 .. raw:: html
tX0X1X2
00-0.20527910.31359111.520626
10.12.1278920.15740960.05643199
20.21.05201-1.0692860.03896958
30.30.10886191.5602230.8978581
40.40.071317860.32905810.7683447
50.5-0.20172150.14830740.4988259
60.6-0.54060890.2022151.52964
70.7-1.1921790.5249542-0.1271758
80.81.0012170.2995675-0.07324792
90.9-0.59280080.5097731.568079
1010.36934280.68734620.2602205
111.11.5601010.6838802-0.2604079
121.20.1696515-1.0165730.8102853
131.3-0.93454770.44023350.1026545
141.40.16255020.9776058-0.6851276
151.5-0.04119683-0.16153130.009488993
161.6-0.69923730.83564310.9612086
171.7-0.39534240.2505092-1.712787
181.8-0.30337221.7134330.2879968
191.9-0.3462038-1.243077-0.6619336
202-0.53962570.78917960.525199
212.10.2655049-0.61535330.6677281
222.2-0.3206562-0.00603524-1.440427
232.30.070651250.4005165-0.5370034
242.4-2.1304320.1862285-1.326288
252.50.2426011-0.8973327-0.9573643
262.61.588237-0.2380769-0.6543979
272.71.498919-0.7131357-1.335157
282.80.56762850.640198-0.259729
292.90.1922855-1.4022210.5600177
303-1.3562441.034522-0.3787931
313.1-0.1257271-0.58783561.078941
323.2-1.6693861.708344-0.8459409
333.3-0.1786205-0.19588441.811325
343.40.40003631.108118-0.4552358
353.5-0.79341742.2838290.351885
363.6-0.060822141.1825742.057236
373.72.083603-1.1094570.6461174
383.80.3140881-1.2591952.51347
393.91.106768-1.237082-0.4050629
4041.2447750.2588656-0.1137998
414.10.38149980.15579110.4024124
424.21.332716-0.80561920.3854209
434.3-1.61086-0.6874292-0.02107395
444.4-1.405266-0.6029087-0.07453712
454.5-0.287633-0.4026233-0.4894317
464.6-0.58033881.1964891.004556
474.70.5372572-0.087709091.423935
484.80.68201462.8840550.2796988
494.9-1.178997-0.1438920.6813079
5050.014379190.5099701-1.060234
515.10.044836570.24991971.24773
525.2-0.3856004-0.2880728-0.5890517
535.30.49957531.132313-0.8437811
545.41.43619-0.18765030.940522
555.50.7151117-1.439318-0.1429401
565.6-0.17658880.90543350.6688361
575.7-0.1848348-0.20561710.8539061
585.81.0827170.7860448-1.839514
595.9-0.4807376-0.74311110.2583894
6060.064986780.8220976-0.2202976
616.1-1.2674070.06548754-2.506485
626.20.2182682-0.3734256-0.3483342
636.3-1.020392-0.93736840.793814
646.4-0.983334-0.41518980.1049272
656.5-0.49916560.3643877-0.1627931
666.60.49257820.3548167-0.8811936
676.7-0.819895-2.1065360.1773956
686.8-0.04881701-0.9867962-0.8862132
696.91.2191610.2666910.188304
7070.80905141.619885-0.5646788
717.1-0.99210440.72452450.3057475
727.2-0.41199462.7598560.4088039
737.31.121707-0.6501654-1.034288
747.41.1503790.55874531.332409
757.5-0.32251480.4750779-0.1536095
767.61.0355351.3811751.225896
777.7-0.10566460.30691660.4924758
787.80.4262604-0.5698308-0.4156163
797.9-2.609303-2.173168-1.324497
808-1.455850.18018371.421198
818.11.866039-0.1742316-1.55547
828.21.48841.303924-1.061323
838.3-1.305955-1.629615-0.2962869
848.40.87397920.1051378-0.02998592
858.5-1.5160321.474471-1.03669
868.6-1.5346510.82599010.457382
878.7-0.38656151.28411-0.3259461
888.81.637177-0.8420178-0.2924097
898.90.36159910.45709650.237978
9091.0208261.699262-0.5438809
919.10.4973056-1.469904-2.294773
929.2-0.2623551-1.554523-2.82731
939.30.58255310.4139608-0.9302437
949.40.549059-0.69065-0.6021352
959.5-0.76771841.285077-0.22259
969.61.2217410.4439343-0.7078664
979.7-1.0569120.56485510.2980986
989.81.3424181.0858370.8239627
999.9-0.6283856-0.88345760.8607533


.. GENERATED FROM PYTHON SOURCE LINES 50-51 Get the number of values of the time series .. GENERATED FROM PYTHON SOURCE LINES 51-53 .. code-block:: Python myTimeSeries.getSize() .. rst-class:: sphx-glr-script-out .. code-block:: none 100 .. GENERATED FROM PYTHON SOURCE LINES 54-55 Get the dimension of the values observed at each time .. GENERATED FROM PYTHON SOURCE LINES 55-57 .. code-block:: Python myTimeSeries.getMesh().getDimension() .. rst-class:: sphx-glr-script-out .. code-block:: none 1 .. GENERATED FROM PYTHON SOURCE LINES 58-59 Get the value Xi at index i .. GENERATED FROM PYTHON SOURCE LINES 59-62 .. code-block:: Python i = 37 print("Xi = ", myTimeSeries.getValueAtIndex(i)) .. rst-class:: sphx-glr-script-out .. code-block:: none Xi = [-0.4429,-0.541246,-1.35629] .. GENERATED FROM PYTHON SOURCE LINES 63-64 Get the time series at index i : Xi .. GENERATED FROM PYTHON SOURCE LINES 64-67 .. code-block:: Python i = 37 print("Xi = ", myTimeSeries[i]) .. rst-class:: sphx-glr-script-out .. code-block:: none Xi = [-0.4429,-0.541246,-1.35629] .. GENERATED FROM PYTHON SOURCE LINES 68-69 Get a the marginal value at index i of the time series .. GENERATED FROM PYTHON SOURCE LINES 69-75 .. code-block:: Python i = 37 # get the time stamp: print("ti = ", myTimeSeries.getTimeGrid().getValue(i)) # get the first component of the corresponding value : print("Xi1 = ", myTimeSeries[i, 0]) .. rst-class:: sphx-glr-script-out .. code-block:: none ti = 3.7 Xi1 = -0.44290028916853585 .. GENERATED FROM PYTHON SOURCE LINES 76-77 Get all the values (X1, .., Xn) of the time series .. GENERATED FROM PYTHON SOURCE LINES 77-79 .. code-block:: Python myTimeSeries.getValues() .. raw:: html
X0X1X2
01.011887-0.60894180.259667
10.32478160.54104460.124925
20.63389020.71796950.2042093
3-0.2305653-0.44102910.2181727
40.35804720.38904820.02232993
51.6547320.71806581.200392
6-0.042854120.2991685-1.958143
70.3422039-0.82200640.4143278
8-0.33638151.84368-0.637582
90.4117993-0.1768882-1.10384
10-0.41442070.2661011-0.3402945
110.7169809-0.62448821.487634
12-0.23548430.2280304-0.8464
13-0.050612860.9634821-0.2666059
140.7183027-1.35427-0.3999666
150.8274424-1.601233-0.7890261
16-0.470555-1.173748-1.172249
171.446331-0.01098964-0.3921936
180.4236814-0.2151677-1.361857
190.65389551.875609-0.4024692
200.6233072-0.20729511.17231
210.2915004-2.075439-0.2298406
220.9320396-2.897866-0.485802
23-0.31546490.5633166-1.547632
241.749131-0.71175120.1204685
250.85627010.5912137-1.075188
26-0.751024-0.5502947-1.290288
270.77695060.5568254-0.9893918
282.238198-0.015503980.87992
291.100906-1.0879361.281433
300.7702127-1.1194310.3614885
31-1.4377740.1921378-1.693616
321.488139-0.9791753-1.664384
332.758905-0.05688733-0.5173643
340.06441027-0.4975254-1.670192
35-0.52785181.1526480.1565362
36-0.7900780.1192994-1.69795
37-0.4429003-0.5412464-1.356292
38-0.5499819-1.220419-0.1770449
391.709167-0.63666080.2184536
400.44804051.224067-0.2393039
41-0.4370185-0.53345870.4306893
42-0.5499989-0.9207816-2.351244
43-0.95605840.9430510.7254229
440.10328240.51611092.005021
451.635069-1.4397670.5297914
461.036868-0.4441049-0.7533471
470.1001542-0.55023411.41372
480.4642140.4474071-1.057613
491.359945-0.710775-0.1642414
50-1.2835440.55665320.5485656
511.6873740.7934399-0.5400267
52-0.848387-0.10326420.9586013
53-1.025222-0.3549386-0.8693017
540.2668970.296524-2.241144
55-1.560704-2.2719980.7224505
56-2.161275-0.32861041.069747
57-1.779941-0.8327076-0.2453716
58-0.0205006-0.17010060.5292955
59-0.7251038-1.1624730.1995235
600.7271477-0.2606875-0.1367718
610.5202298-0.6591333-0.1806734
62-1.0488470.51237110.2064803
63-0.9608320.4146824-1.228714
642.57497-0.008049008-1.885899
650.830757-0.37834590.4790463
661.609382-0.57084130.2690964
670.80350330.58321810.4497564
68-0.69355591.8966620.02708176
69-0.258272-0.370120.04565963
70-0.3430478-0.3924844-2.410929
711.939206-0.59004380.2270499
72-0.14176540.85550650.286761
730.5648119-0.50970081.403344
74-1.3785220.43403510.03425181
750.8961165-0.87057751.369953
760.27259690.5792226-1.532103
770.9570650.4276634-0.3666802
780.6486989-0.0046494410.1715484
79-0.079576110.4553892-2.140093
800.93324460.8186856-1.548256
810.370246-0.773089-0.01298333
820.1873089-2.131449-1.197682
83-0.005001849-0.1256726-1.892007
843.40565-0.10357620.4154477
850.72725450.97885531.158081
860.29527520.28393391.294258
870.20077350.3422650.1640854
88-0.60838320.14434630.5377329
890.69655671.1879062.180975
90-0.19480930.62831560.2308662
91-0.6480712-0.028020310.8710046
921.244731-0.1063582-0.2344887
93-2.0102040.1217012-1.331632
94-0.8254575-1.216578-1.025789
95-1.224865-0.73505670.2674311
96-0.31396660.3284034-1.185418
970.2725766-0.5379969-0.1546276
980.034893870.35720810.8738098
99-1.489697-1.6032330.2768838


.. GENERATED FROM PYTHON SOURCE LINES 80-82 Compute the temporal Mean It corresponds to the mean of the values of the time series .. GENERATED FROM PYTHON SOURCE LINES 82-84 .. code-block:: Python myTimeSeries.getInputMean() .. raw:: html
class=Point name=Unnamed dimension=3 values=[0.153322,-0.0887119,-0.139828]


.. GENERATED FROM PYTHON SOURCE LINES 85-86 Draw the marginal i of the time series using linear interpolation .. GENERATED FROM PYTHON SOURCE LINES 86-89 .. code-block:: Python graph = myTimeSeries.drawMarginal(0) view = viewer.View(graph) .. image-sg:: /auto_probabilistic_modeling/stochastic_processes/images/sphx_glr_plot_timeseries_manipulation_001.png :alt: Unnamed - 0 marginal :srcset: /auto_probabilistic_modeling/stochastic_processes/images/sphx_glr_plot_timeseries_manipulation_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 90-91 with no interpolation .. GENERATED FROM PYTHON SOURCE LINES 91-94 .. code-block:: Python graph = myTimeSeries.drawMarginal(0, False) view = viewer.View(graph) plt.show() .. image-sg:: /auto_probabilistic_modeling/stochastic_processes/images/sphx_glr_plot_timeseries_manipulation_002.png :alt: Unnamed - 0 marginal :srcset: /auto_probabilistic_modeling/stochastic_processes/images/sphx_glr_plot_timeseries_manipulation_002.png :class: sphx-glr-single-img .. _sphx_glr_download_auto_probabilistic_modeling_stochastic_processes_plot_timeseries_manipulation.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_timeseries_manipulation.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_timeseries_manipulation.py `