Create a custom covariance model

This example illustrates how the user can define his own covariance model.

import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt
import math as m

ot.Log.Show(ot.Log.NONE)

Construct the covariance model

Create the time grid

N = 32
a = 4.0
mesh = ot.IntervalMesher([N]).build(ot.Interval(-a, a))

Create the covariance function at (s,t)

def C(s, t):
    return m.exp(-4.0 * abs(s - t) / (1 + (s * s + t * t)))

Create the large covariance matrix

covariance = ot.CovarianceMatrix(mesh.getVerticesNumber())
for k in range(mesh.getVerticesNumber()):
    t = mesh.getVertices()[k]
    for ll in range(k + 1):
        s = mesh.getVertices()[ll]
        covariance[k, ll] = C(s[0], t[0])

Create the covariance model

covmodel = ot.UserDefinedCovarianceModel(mesh, covariance)

Draw the covariance model as a function

Define the function to draw

def f(x):
    return [covmodel([x[0]], [x[1]])[0, 0]]


func = ot.PythonFunction(2, 1, f)
func.setDescription(["$s$", "$t$", "$cov$"])

Draw the function with default options

cov_graph = func.draw([-a] * 2, [a] * 2, [512] * 2)
cov_graph.setLegendPosition("")
view = viewer.View(cov_graph)
$cov$ as a function of ($s$,$t$)

Draw the function in a filled contour graph

cov_graph = func.draw(
    0, 1, 0, [0] * 2, [-a] * 2, [a] * 2, [512] * 2, ot.GraphImplementation.NONE, True
)
view = viewer.View(cov_graph)
$cov$ as a function of ($s$,$t$)

Draw the covariance model as a matrix

Use raw matshow

plt.matshow(covariance)
plot userdefined covariance model
<matplotlib.image.AxesImage object at 0x7ff3e7bd2f00>

Draw the covariance model as a matrix with the correct axes.

To obtain the correct orientation of the y axis we use the origin argument. To obtain the correct graduations we use the extent argument. We also change the colormap used.

pas = 2 * a / (N - 1)
plt.matshow(
    covariance,
    cmap="gray",
    origin="lower",
    extent=(-a - pas / 2, a + pas / 2, -a - pas / 2, a + pas / 2),
)
plt.show()
plot userdefined covariance model

Total running time of the script: (0 minutes 5.370 seconds)