ConditionalRandomVector

(Source code, png)

../../_images/ConditionalRandomVector.png
class ConditionalRandomVector(*args)

Conditional random vector.

Helper class for defining the random vector \vect{X} such that \vect{X}|\vect{\Theta} follows the distribution \mathcal{L}_{\vect{X}|\vect{\Theta}}, with \vect{\Theta} a random vector of dimension the dimension of \vect{\Theta}.

Parameters:
conditionedDistDistribution, the distribution of \vect{X}|\vect{\Theta}, whose parameters will be overwritten by \vect{\Theta}.
randomParametersRandomVector, the random parameters \vect{\Theta} of the conditionedDist distribution.

Notes

Its probability density function is defined as:

f_{\vect{X}}(\vect{x}) = \int f_{\vect{X}|\vect{\Theta}=\vect{\theta}}(\vect{x}|\vect{\theta}) f_{\vect{\Theta}}(\vect{\theta})\di{\vect{\theta}}

with f_{\vect{X}|\vect{\Theta}=\vect{\theta}} the PDF of the distribution of \vect{X}|\vect{\Theta}, where \vect{\Theta} has been replaced by \vect{\theta}, f_{\vect{\Theta}} the PDF of \vect{\Theta}.

Note that there exist other (quasi) equivalent modellings using a combination of the classes ConditionalDistribution and RandomVector (see the Use Cases Guide).

Examples

Create a random vector:

>>> import openturns as ot
>>> distXgivenT = ot.Exponential()
>>> distGamma = ot.Uniform(1.0, 2.0)
>>> distAlpha = ot.Uniform(0.0, 0.1)
>>> distTheta = ot.JointDistribution([distGamma, distAlpha])
>>> rvTheta = ot.RandomVector(distTheta)
>>> rvX = ot.ConditionalRandomVector(distXgivenT, rvTheta)

Draw a sample:

>>> sample = rvX.getSample(5)

Methods

asComposedEvent()

If the random vector can be viewed as the composition of several ThresholdEvent objects, this method builds and returns the composition.

getAntecedent()

Accessor to the antecedent RandomVector in case of a composite RandomVector.

getClassName()

Accessor to the object's name.

getCovariance()

Accessor to the covariance of the RandomVector.

getDescription()

Accessor to the description of the RandomVector.

getDimension()

Accessor to the dimension of the RandomVector.

getDistribution()

Accessor to the distribution's conditioned distribution parameter conditionedDistribution.

getDomain()

Accessor to the domain of the Event.

getFrozenRealization(fixedPoint)

Compute realizations of the RandomVector.

getFrozenSample(fixedSample)

Compute realizations of the RandomVector.

getFunction()

Accessor to the Function in case of a composite RandomVector.

getMarginal(*args)

Get the random vector corresponding to the i^{th} marginal component(s).

getMean()

Accessor to the mean of the RandomVector.

getName()

Accessor to the object's name.

getOperator()

Accessor to the comparaison operator of the Event.

getParameter()

Accessor to the parameter of the distribution.

getParameterDescription()

Accessor to the parameter description of the distribution.

getProcess()

Get the stochastic process.

getRandomParameters()

Accessor to the distribution's random parameter randomParameters.

getRealization(*args)

Compute one realization of the RandomVector.

getSample(size)

Compute realizations of the RandomVector.

getThreshold()

Accessor to the threshold of the Event.

hasName()

Test if the object is named.

isComposite()

Accessor to know if the RandomVector is a composite one.

isEvent()

Whether the random vector is an event.

setDescription(description)

Accessor to the description of the RandomVector.

setName(name)

Accessor to the object's name.

setParameter(parameters)

Accessor to the parameter of the distribution.

__init__(*args)
asComposedEvent()

If the random vector can be viewed as the composition of several ThresholdEvent objects, this method builds and returns the composition. Otherwise throws.

Returns:
composedRandomVector

Composed event.

getAntecedent()

Accessor to the antecedent RandomVector in case of a composite RandomVector.

Returns:
antecedentRandomVector

Antecedent RandomVector \vect{X} in case of a CompositeRandomVector such as: \vect{Y}=f(\vect{X}).

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getCovariance()

Accessor to the covariance of the RandomVector.

Returns:
covarianceCovarianceMatrix

Covariance of the considered UsualRandomVector.

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getCovariance())
[[ 1    0    ]
 [ 0    2.25 ]]
getDescription()

Accessor to the description of the RandomVector.

Returns:
descriptionDescription

Describes the components of the RandomVector.

getDimension()

Accessor to the dimension of the RandomVector.

Returns:
dimensionpositive int

Dimension of the RandomVector.

getDistribution()

Accessor to the distribution’s conditioned distribution parameter conditionedDistribution.

Returns:
conditionedDistributionDistribution, the distribution of \vect{X}|\vect{\Theta}=\vect{\theta}, where the parameters \vect{\theta} are equal to the values used to generate the last realization of \vect{X}.
getDomain()

Accessor to the domain of the Event.

Returns:
domainDomain

Describes the domain of an event.

getFrozenRealization(fixedPoint)

Compute realizations of the RandomVector.

In the case of a CompositeRandomVector or an event of some kind, this method returns the value taken by the random vector if the root cause takes the value given as argument.

Parameters:
fixedPointPoint

Point chosen as the root cause of the random vector.

Returns:
realizationPoint

The realization corresponding to the chosen root cause.

Examples

>>> import openturns as ot
>>> distribution = ot.Normal()
>>> randomVector = ot.RandomVector(distribution)
>>> f = ot.SymbolicFunction('x', 'x')
>>> compositeRandomVector = ot.CompositeRandomVector(f, randomVector)
>>> event = ot.ThresholdEvent(compositeRandomVector, ot.Less(), 0.0)
>>> print(event.getFrozenRealization([0.2]))
[0]
>>> print(event.getFrozenRealization([-0.1]))
[1]
getFrozenSample(fixedSample)

Compute realizations of the RandomVector.

In the case of a CompositeRandomVector or an event of some kind, this method returns the different values taken by the random vector when the root cause takes the values given as argument.

Parameters:
fixedSampleSample

Sample of root causes of the random vector.

Returns:
sampleSample

Sample of the realizations corresponding to the chosen root causes.

Examples

>>> import openturns as ot
>>> distribution = ot.Normal()
>>> randomVector = ot.RandomVector(distribution)
>>> f = ot.SymbolicFunction('x', 'x')
>>> compositeRandomVector = ot.CompositeRandomVector(f, randomVector)
>>> event = ot.ThresholdEvent(compositeRandomVector, ot.Less(), 0.0)
>>> print(event.getFrozenSample([[0.2], [-0.1]]))
    [ y0 ]
0 : [ 0  ]
1 : [ 1  ]
getFunction()

Accessor to the Function in case of a composite RandomVector.

Returns:
functionFunction

Function used to define a CompositeRandomVector as the image through this function of the antecedent \vect{X}: \vect{Y}=f(\vect{X}).

getMarginal(*args)

Get the random vector corresponding to the i^{th} marginal component(s).

Parameters:
iint or list of ints, 0\leq i < dim

Indicates the component(s) concerned. dim is the dimension of the RandomVector.

Returns:
vectorRandomVector

RandomVector restricted to the concerned components.

Notes

Let’s note \vect{Y}=\Tr{(Y_1,\dots,Y_n)} a random vector and I \in [1,n] a set of indices. If \vect{Y} is a UsualRandomVector, the subvector is defined by \tilde{\vect{Y}}=\Tr{(Y_i)}_{i \in I}. If \vect{Y} is a CompositeRandomVector, defined by \vect{Y}=f(\vect{X}) with f=(f_1,\dots,f_n), f_i some scalar functions, the subvector is \tilde{\vect{Y}}=(f_i(\vect{X}))_{i \in I}.

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getMarginal(1).getRealization())
[0.608202]
>>> print(randomVector.getMarginal(1).getDistribution())
Normal(mu = 0, sigma = 1)
getMean()

Accessor to the mean of the RandomVector.

Returns:
meanPoint

Mean of the considered UsualRandomVector.

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.5], [1.0, 1.5], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getMean())
[0,0.5]
getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getOperator()

Accessor to the comparaison operator of the Event.

Returns:
operatorComparisonOperator

Comparaison operator used to define the RandomVector.

getParameter()

Accessor to the parameter of the distribution.

Returns:
parameterPoint

Parameter values.

getParameterDescription()

Accessor to the parameter description of the distribution.

Returns:
descriptionDescription

Parameter names.

getProcess()

Get the stochastic process.

Returns:
processProcess

Stochastic process used to define the RandomVector.

getRandomParameters()

Accessor to the distribution’s random parameter randomParameters.

Returns:
randomParametersRandomVector, the random parameters \vect{\Theta}.
getRealization(*args)

Compute one realization of the RandomVector.

Returns:
realizationPoint

Sequence of values randomly determined from the RandomVector definition. In the case of an event: one realization of the event (considered as a Bernoulli variable) which is a boolean value (1 for the realization of the event and 0 else).

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getRealization())
[0.608202,-1.26617]
>>> print(randomVector.getRealization())
[-0.438266,1.20548]
getSample(size)

Compute realizations of the RandomVector.

Parameters:
nint, n \geq 0

Number of realizations needed.

Returns:
realizationsSample

n sequences of values randomly determined from the RandomVector definition. In the case of an event: n realizations of the event (considered as a Bernoulli variable) which are boolean values (1 for the realization of the event and 0 else).

Examples

>>> import openturns as ot
>>> distribution = ot.Normal([0.0, 0.0], [1.0, 1.0], ot.CorrelationMatrix(2))
>>> randomVector = ot.RandomVector(distribution)
>>> ot.RandomGenerator.SetSeed(0)
>>> print(randomVector.getSample(3))
    [ X0        X1        ]
0 : [  0.608202 -1.26617  ]
1 : [ -0.438266  1.20548  ]
2 : [ -2.18139   0.350042 ]
getThreshold()

Accessor to the threshold of the Event.

Returns:
thresholdfloat

Threshold of the RandomVector.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

isComposite()

Accessor to know if the RandomVector is a composite one.

Returns:
isCompositebool

Indicates if the RandomVector is of type Composite or not.

isEvent()

Whether the random vector is an event.

Returns:
isEventbool

Whether it takes it values in {0, 1}.

setDescription(description)

Accessor to the description of the RandomVector.

Parameters:
descriptionstr or sequence of str

Describes the components of the RandomVector.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setParameter(parameters)

Accessor to the parameter of the distribution.

Parameters:
parametersequence of float

Parameter values.

Examples using the class

Create a conditional random vector

Create a conditional random vector