pBeta

pBeta(p1, p2, x, tail=False)

Cumulative distribution function of a Beta distribution on [0,1].

Parameters:
alphafloat, \alpha > 0

Parameter \alpha.

betafloat, \beta > 0

Parameter \beta.

xfloat

Location.

tailbool, optional

Tail flag. Default value is False. If True, the complementary CDF is computed.

Returns:
pfloat

The CDF or the complementary CDF at x.

Notes

The probability density function is defined as:

p(x) = \dfrac{1}{B(\alpha, \beta)}x^{(\alpha-1)}(1-x)^{(\beta-1)} \quad x \in [0,1]

with \alpha, \beta > 0 and where \rm B denotes Euler’s beta function Beta().

Examples

>>> import openturns as ot
>>> cdf = ot.DistFunc.pBeta(2.5, 3.5, 0.9)