qBeta

qBeta(p1, p2, p, tail=False)

Quantile of a Beta distribution on [0,1].

Parameters:
alphafloat, \alpha > 0

Parameter \alpha.

betafloat, \beta > 0

Parameter \beta.

pfloat, in [0,1]

The probability.

tailbool, optional

Tail flag. Default value is False. If True, the quantile associated to (1-p) is computed.

Returns:
qfloat

The quantile of order p or (1-p).

Notes

The probability density function is defined as:

p(x) = \dfrac{1}{B(\alpha, \beta)}x^{(\alpha-1)}(1-x)^{(\beta-1)} \quad x \in [0,1]

with \alpha, \beta > 0 and where \rm B denotes Euler’s beta function Beta().

Examples

>>> import openturns as ot
>>> q = ot.DistFunc.qBeta(2.5, 3.5, 0.95)
>>> q = ot.DistFunc.qBeta(2.5, 3.5, 0.95, True)