DistributionParameters

class DistributionParameters(*args)

Define a distribution with particular parameters.

This class enables to create a set of non-native parameters in order to define distribution.

A DistributionParameters object can be used through its derived classes:

Methods

evaluate()

Compute native parameters values.

getClassName()

Accessor to the object's name.

getDescription()

Get the description of the parameters.

getDistribution()

Build a distribution based on a set of native parameters.

getId()

Accessor to the object's id.

getImplementation()

Accessor to the underlying implementation.

getName()

Accessor to the object's name.

getValues()

Accessor to the parameters values.

gradient()

Get the gradient.

inverse(inP)

Convert to native parameters.

setName(name)

Accessor to the object's name.

setValues(values)

Accessor to the parameters values.

__init__(*args)
evaluate()

Compute native parameters values.

Returns:
valuesPoint

The native parameter values.

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getDescription()

Get the description of the parameters.

Returns:
collectionDescription

List of parameters names.

getDistribution()

Build a distribution based on a set of native parameters.

Returns:
distributionDistribution

Distribution built with the native parameters.

getId()

Accessor to the object’s id.

Returns:
idint

Internal unique identifier.

getImplementation()

Accessor to the underlying implementation.

Returns:
implImplementation

A copy of the underlying implementation object.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getValues()

Accessor to the parameters values.

Returns:
valuesPoint

List of parameters values.

gradient()

Get the gradient.

Returns:
gradientMatrix

The gradient of the transformation of the native parameters into the new parameters.

Notes

If we note (p_1, \dots, p_q) the native parameters and (p'_1, \dots, p'_q) the new ones, then the gradient matrix is \left( \dfrac{\partial p'_i}{\partial p_j} \right)_{1 \leq i,j \leq  q}.

inverse(inP)

Convert to native parameters.

Parameters:
inPsequence of float

The non-native parameters.

Returns:
outPPoint

The native parameters.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setValues(values)

Accessor to the parameters values.

Parameters:
valuessequence of float

List of parameters values.