ChiSquared¶
- ChiSquared(*args)¶
- Perform a - goodness-of-fit test for 1-d discrete distributions. - Refer to Chi-squared test. - Parameters:
- sample2-d sequence of float
- Tested sample. 
- modelDistributionorDistributionFactory
- Tested distribution. 
- levelfloat, , optional 
- This is the risk - of committing a Type I error, that is an incorrect rejection of a true null hypothesis. 
- n_parametersint, , optional 
- The number of parameters in the distribution that have been estimated from the sample. This parameter must not be provided if a - DistributionFactorywas provided as the second argument (it will internally be set to the number of parameters estimated by the- DistributionFactory). It can be specified if a- Distributionwas provided as the second argument, but if it is not, it will be set equal to 0.
 
- Returns:
- fitted_distDistribution
- Estimated distribution (if model is of type - DistributionFactory).
- test_resultTestResult
- Test result. 
 
- fitted_dist
- Raises:
- TypeErrorIf the distribution is not discrete or if the sample is
- multivariate. 
 
 - Examples - >>> import openturns as ot >>> ot.RandomGenerator.SetSeed(0) >>> distribution = ot.Poisson() >>> sample = distribution.getSample(30) >>> fitted_dist, test_result = ot.FittingTest.ChiSquared(sample, ot.PoissonFactory(), 0.01) >>> test_result class=TestResult name=Unnamed type=ChiSquared Poisson binaryQualityMeasure=true p-value threshold=0.01 p-value=0.698061 statistic=0.150497 description=[Poisson(lambda = 1.06667) vs sample Poisson] 
 OpenTURNS
      OpenTURNS
    