RungeKutta¶
(Source code, png)
- class RungeKutta(*args)¶
Runge-Kutta fourth-order method.
- Parameters:
- transitionFunction
Function The function defining the flow of the ordinary differential equation. Must have one parameter.
- transitionFunction
See also
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['t', 'y0', 'y1'], ['t - y0', 'y1 + t^2']) >>> phi = ot.ParametricFunction(f, [0], [0.0]) >>> solver = ot.RungeKutta(phi) >>> Y0 = [1.0, -1.0] >>> nt = 100 >>> timeGrid = [(i**2.0) / (nt - 1.0)**2.0 for i in range(nt)] >>> result = solver.solve(Y0, timeGrid)
Methods
Accessor to the object's name.
getName()Accessor to the object's name.
Transition function accessor.
hasName()Test if the object is named.
setName(name)Accessor to the object's name.
setTransitionFunction(transitionFunction)Transition function accessor.
solve(*args)Solve ODE.
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getTransitionFunction()¶
Transition function accessor.
- Returns:
- transitionFunction
FieldFunction Transition function.
- transitionFunction
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setTransitionFunction(transitionFunction)¶
Transition function accessor.
- Parameters:
- transitionFunction
FieldFunction Transition function.
- transitionFunction
OpenTURNS