RungeKutta¶
(Source code
, png
)
- class RungeKutta(*args)¶
Runge-Kutta fourth-order method.
- Parameters:
- transitionFunction
Function
The function defining the flow of the ordinary differential equation. Must have one parameter.
- transitionFunction
See also
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['t', 'y0', 'y1'], ['t - y0', 'y1 + t^2']) >>> phi = ot.ParametricFunction(f, [0], [0.0]) >>> solver = ot.RungeKutta(phi) >>> Y0 = [1.0, -1.0] >>> nt = 100 >>> timeGrid = [(i**2.0) / (nt - 1.0)**2.0 for i in range(nt)] >>> result = solver.solve(Y0, timeGrid)
Methods
Accessor to the object's name.
getName
()Accessor to the object's name.
Transition function accessor.
hasName
()Test if the object is named.
setName
(name)Accessor to the object's name.
setTransitionFunction
(transitionFunction)Transition function accessor.
solve
(*args)Solve ODE.
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getTransitionFunction()¶
Transition function accessor.
- Returns:
- transitionFunction
FieldFunction
Transition function.
- transitionFunction
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.
- setTransitionFunction(transitionFunction)¶
Transition function accessor.
- Parameters:
- transitionFunction
FieldFunction
Transition function.
- transitionFunction