Debye

Debye(x, n)

Debye function of order n.

\forall x \in \Rset, \forall n \in \Nset^* \text{and} \, n \leq 20, \quad
\mathrm{D}_n(x) = \frac{n}{x^n} \int_0^x \frac{t^n}{\exp(t)-1}\di{t}

Parameters:
xfloat
nint \in \{1, \cdots, 20\}
Returns:
resultfloat