VertexValuePointToFieldFunction

class VertexValuePointToFieldFunction(*args)

Function mapping a (vertex, value) point to a field.

Parameters:
gFunction

Function g: \Rset^n \times \Rset^d \rightarrow \Rset^{d'}.

meshMesh

Mesh on which the function is defined.

Notes

Let us note g : \Rset^{d} \rightarrow \Rset^{d'} a function, \cM_N a mesh of \cD \subset \Rset^{p}. Vertex value (point to field) functions are particular functions that map the field F = (\vect{t}_i, \vect{v}_i)_{1 \leq i \leq N} onto F' relying on the g function such as:

f: \left| \begin{array}{rcl}
           \Rset^d & \rightarrow & \cM_N \times (\Rset^{d'})^{N} \\
            F & \mapsto & F'
          \end{array} \right.

with F = (\vect{t}_i, \vect{v}_i)_{1 \leq i \leq N}, F' = (\vect{t}_i, \vect{v}'_i)_{1 \leq i \leq N} and \cM_{N} a mesh of \cD \subset \Rset^{n}.

A vertex value function keeps the mesh unchanged: the input mesh is equal to the output mesh.

The field F' is defined by the function g: \Rset^n \times \Rset^d \rightarrow \Rset^{d'}:

\forall \vect{t}_i \in \cM_N, \quad \vect{v}'_i = g(\vect{t}_i, \vect{v}_i)

When g is not specified, the constructor builds an object which evaluation operator is not defined (it throws a NotYetImplementedException). The instantiation of such an object is used to extract an actual VertexValuePointToFieldFunction from a Study.

Examples

>>> import openturns as ot

Create a function g : \Rset \times \Rset \rightarrow \Rset such as:

g: \left|\begin{array}{rcl}
            \Rset \times \Rset & \rightarrow & \Rset \\
            (t, x) & \mapsto & (x + t^2)
        \end{array}\right.

>>> g = ot.SymbolicFunction(['t', 'x'], ['x + t^2'])

Convert g into a vertex value function with n=1:

>>> n = 1
>>> grid = ot.RegularGrid(0.0, 0.2, 6)
>>> f = ot.VertexValuePointToFieldFunction(g, grid)
>>> x = [4.0]
>>> print(f(x))
    [ y0   ]
0 : [ 4    ]
1 : [ 4.04 ]
2 : [ 4.16 ]
3 : [ 4.36 ]
4 : [ 4.64 ]
5 : [ 5    ]

Methods

getCallsNumber()

Get the number of calls of the function.

getClassName()

Accessor to the object's name.

getFunction()

Get the function of \ell.

getInputDescription()

Get the description of the input vector.

getInputDimension()

Get the dimension of the input vector.

getMarginal(*args)

Get the marginal(s) at given indice(s).

getName()

Accessor to the object's name.

getOutputDescription()

Get the description of the output field values.

getOutputDimension()

Get the dimension of the output field values.

getOutputMesh()

Get the output mesh.

hasName()

Test if the object is named.

setInputDescription(inputDescription)

Set the description of the input vector.

setName(name)

Accessor to the object's name.

setOutputDescription(outputDescription)

Set the description of the output field values.

__init__(*args)
getCallsNumber()

Get the number of calls of the function.

Returns:
callsNumberint

Counts the number of times the function has been called since its creation.

getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getFunction()

Get the function of \ell.

Returns:
lFunction

Function \ell: \Rset^n \times \Rset^d \rightarrow \Rset^{d'}.

Examples

>>> import openturns as ot
>>> h = ot.SymbolicFunction(['t', 'x'], ['x + t^2'])
>>> n = 1
>>> mesh = ot.Mesh(n)
>>> myVertexValuePointToFieldFunction = ot.ValueFunction(h, mesh)
>>> print(myVertexValuePointToFieldFunction.getFunction())
[t,x]->[x + t^2]
getInputDescription()

Get the description of the input vector.

Returns:
inputDescriptionDescription

Description of the input vector.

getInputDimension()

Get the dimension of the input vector.

Returns:
dint

Dimension d of the input vector.

getMarginal(*args)

Get the marginal(s) at given indice(s).

Parameters:
iint or list of ints, 0 \leq i < d

Indice(s) of the marginal(s) to be extracted.

Returns:
functionPointToFieldFunction

The initial function restricted to the concerned marginal(s) at the indice(s) i.

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

getOutputDescription()

Get the description of the output field values.

Returns:
outputDescriptionDescription

Description of the output field values.

getOutputDimension()

Get the dimension of the output field values.

Returns:
d’int

Dimension d' of the output field values.

getOutputMesh()

Get the output mesh.

Returns:
outputMeshMesh

The mesh \cM_{N'} of the output field.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

setInputDescription(inputDescription)

Set the description of the input vector.

Parameters:
inputDescriptionsequence of str

Description of the input vector.

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

setOutputDescription(outputDescription)

Set the description of the output field values.

Parameters:
outputDescriptionsequence of str

Description of the output field values.