.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_meta_modeling/general_purpose_metamodels/plot_export_metamodel.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_meta_modeling_general_purpose_metamodels_plot_export_metamodel.py: Export a metamodel ------------------ .. GENERATED FROM PYTHON SOURCE LINES 7-9 In this example we will see how to export a metamodel from the context it is created to another context where it will actually be used with the help of the pickle module. .. GENERATED FROM PYTHON SOURCE LINES 11-15 .. code-block:: Python import openturns as ot from openturns.usecases import cantilever_beam import pickle .. GENERATED FROM PYTHON SOURCE LINES 16-18 Load the cantilever beam use-case. We want to use the independent distribution to get meaningful Sobol' indices. .. GENERATED FROM PYTHON SOURCE LINES 18-22 .. code-block:: Python beam = cantilever_beam.CantileverBeam() g = beam.model distribution = beam.independentDistribution .. GENERATED FROM PYTHON SOURCE LINES 23-24 Generate a learning sample with Monte-Carlo simulation (or retrieve the design from experimental data). .. GENERATED FROM PYTHON SOURCE LINES 24-29 .. code-block:: Python ot.RandomGenerator.SetSeed(0) N = 30 # size of the experimental design X = distribution.getSample(N) Y = g(X) .. GENERATED FROM PYTHON SOURCE LINES 30-31 Build a chaos metamodel .. GENERATED FROM PYTHON SOURCE LINES 31-36 .. code-block:: Python algo = ot.FunctionalChaosAlgorithm(X, Y, distribution) algo.run() assert algo.getResult().getResiduals()[0] < 1e-12 metamodel = algo.getResult().getMetaModel() .. GENERATED FROM PYTHON SOURCE LINES 37-38 Save the metamodel into a `.pkl` file for later use .. GENERATED FROM PYTHON SOURCE LINES 38-41 .. code-block:: Python with open("metamodel.pkl", "wb") as f: pickle.dump(metamodel, f) .. GENERATED FROM PYTHON SOURCE LINES 42-43 Reload the metamodel in another context from the same `.pkl` .. GENERATED FROM PYTHON SOURCE LINES 43-46 .. code-block:: Python with open("metamodel.pkl", "rb") as f: metamodel = pickle.load(f) .. GENERATED FROM PYTHON SOURCE LINES 47-48 Reuse the loaded metamodel .. GENERATED FROM PYTHON SOURCE LINES 48-51 .. code-block:: Python x = [6.70455e10, 300.0, 2.55, 1.45385e-07] y = metamodel(x) print(y) .. rst-class:: sphx-glr-script-out .. code-block:: none [0.170031] .. _sphx_glr_download_auto_meta_modeling_general_purpose_metamodels_plot_export_metamodel.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_export_metamodel.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_export_metamodel.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_export_metamodel.zip `