.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_reliability_sensitivity/reliability/plot_estimate_probability_adaptive_directional_sampling.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_reliability_sensitivity_reliability_plot_estimate_probability_adaptive_directional_sampling.py: Use the Adaptive Directional Stratification Algorithm ===================================================== .. GENERATED FROM PYTHON SOURCE LINES 7-8 In this example we estimate a failure probability with the adaptive directional simulation algorithm provided by the :class:`~openturns.AdaptiveDirectionalStratification` class. .. GENERATED FROM PYTHON SOURCE LINES 10-27 Introduction ------------ The adaptive directional simulation algorithm operates in the standard. It relies on: 1. a *root strategy* to evaluate the nearest failure point along each direction and take the contribution of each direction to the failure event probability into account. The available strategies are: - `RiskyAndFast` - `MediumSafe` - `SafeAndSlow` 2. a *sampling strategy* to choose directions in the standard space. The available strategies are: - `RandomDirection` - `OrthogonalDirection` Let us consider the analytical example of the cantilever beam described :ref:`here `. .. GENERATED FROM PYTHON SOURCE LINES 29-34 .. code-block:: Python from openturns.usecases import cantilever_beam import openturns as ot ot.Log.Show(ot.Log.NONE) .. GENERATED FROM PYTHON SOURCE LINES 35-36 We load the model from the usecases module : .. GENERATED FROM PYTHON SOURCE LINES 36-38 .. code-block:: Python cb = cantilever_beam.CantileverBeam() .. GENERATED FROM PYTHON SOURCE LINES 39-40 We load the joint probability distribution of the input parameters : .. GENERATED FROM PYTHON SOURCE LINES 40-42 .. code-block:: Python distribution = cb.distribution .. GENERATED FROM PYTHON SOURCE LINES 43-44 We load the model giving the displacement at the end of the beam : .. GENERATED FROM PYTHON SOURCE LINES 44-46 .. code-block:: Python model = cb.model .. GENERATED FROM PYTHON SOURCE LINES 47-48 We create the event whose probability we want to estimate. .. GENERATED FROM PYTHON SOURCE LINES 50-54 .. code-block:: Python vect = ot.RandomVector(distribution) G = ot.CompositeRandomVector(model, vect) event = ot.ThresholdEvent(G, ot.Greater(), 0.30) .. GENERATED FROM PYTHON SOURCE LINES 55-56 Root finding algorithm. .. GENERATED FROM PYTHON SOURCE LINES 58-61 .. code-block:: Python solver = ot.Brent() rootStrategy = ot.MediumSafe(solver) .. GENERATED FROM PYTHON SOURCE LINES 62-63 Direction sampling algorithm. .. GENERATED FROM PYTHON SOURCE LINES 65-67 .. code-block:: Python samplingStrategy = ot.RandomDirection() .. GENERATED FROM PYTHON SOURCE LINES 68-69 Create a simulation algorithm. .. GENERATED FROM PYTHON SOURCE LINES 71-77 .. code-block:: Python algo = ot.AdaptiveDirectionalStratification(event, rootStrategy, samplingStrategy) algo.setMaximumCoefficientOfVariation(0.1) algo.setMaximumOuterSampling(40000) algo.setConvergenceStrategy(ot.Full()) algo.run() .. GENERATED FROM PYTHON SOURCE LINES 78-79 Retrieve results. .. GENERATED FROM PYTHON SOURCE LINES 81-86 .. code-block:: Python result = algo.getResult() probability = result.getProbabilityEstimate() print(result) print("Pf=", probability) print("Iterations=", result.getOuterSampling()) .. rst-class:: sphx-glr-script-out .. code-block:: none probabilityEstimate=4.506923e-07 varianceEstimate=1.139950e-15 standard deviation=3.38e-08 coefficient of variation=7.49e-02 confidenceLength(0.95)=1.32e-07 outerSampling=39996 blockSize=1 Pf= 4.50692269819626e-07 Iterations= 39996 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 2.143 seconds) .. _sphx_glr_download_auto_reliability_sensitivity_reliability_plot_estimate_probability_adaptive_directional_sampling.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_estimate_probability_adaptive_directional_sampling.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_estimate_probability_adaptive_directional_sampling.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_estimate_probability_adaptive_directional_sampling.zip `