.. _pce_cross_validation: Cross validation of PCE models ------------------------------ Introduction ~~~~~~~~~~~~ The cross-validation of a polynomial chaos expansion uses the theory presented in :ref:`cross_validation`. In [blatman2009]_ page 84, the author applies the LOO equation to polynomial chaos expansion (see appendix D page 203 for a proof). If the coefficients are estimated from integration, the same derivation cannot, in theory, be applied. Polynomial chaos expansion from linear least squares regression ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Let :math:`n \in \Nset` be an integer representing the number of observations in the experimental design. Let :math:`\set{D} \subseteq \set{X}` be a set of :math:`n` independent observations of the random vector :math:`\vect{X}`: .. math:: \set{D} = \left\{\vect{x}^{(1)}, ..., \vect{x}^{(n)}\right\} Let :math:`P \in \Nset` be an integer representing the number of coefficients in the polynomial chaos expansion. The expansion is: .. math:: \metaModel(\vect{x}) = \sum_{k = 0}^{P - 1} \widehat{a}_k \psi_k(\vect{x}) where :math:`(\widehat{a}_k)_{k = 0,..., P}`\ ’s is the vector of estimates of the coefficients. Assume that the coefficients are estimated using linear least squares. The design matrix :math:`\boldsymbol{\Psi} \in \Rset^{n \times P}` is: .. math:: \boldsymbol{\Psi}_{ik} = \psi_k\left(\vect{x}^{(i)}\right), for :math:`i = 1, \dots, n` and :math:`k = 0, \dots, P-1`. Cross-validation of a PCE ~~~~~~~~~~~~~~~~~~~~~~~~~ If the coefficients of the PCE are estimated using linear least squares, then the fast methods presented in :ref:`cross_validation` can be applied: - the fast leave-one-out cross-validation, - the fast K-Fold cross-validation. Fast methods are implemented in :class:`~openturns.experimental.FunctionalChaosValidation`. .. topic:: API: - See :class:`~openturns.experimental.FunctionalChaosValidation` .. topic:: References: - [blatman2009]_