.. _taylor_expansion: Taylor expansion ---------------- Let :math:`h: \Rset^{\inputDim} \rightarrow \Rset^q` be a twice differentiable mapping. First-order Taylor expansion ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The first-order Taylor expansion of :math:`h` at the point :math:`\ux_0` is the function :math:`\widetilde{h}: \Rset^{\inputDim} \rightarrow \Rset^q` defined for each marginal function :math:`h_k` of :math:`h` by the equation: .. math:: \widetilde{h}_k(\ux) = h_k(\ux_0) + \sum_{i=1}^{\inputDim} \left(\frac{\partial h_k}{\partial x_i}\right)(\ux_0)\left(x_i - x_{0,i} \right) for :math:`k \in \{1, ..., q\}` which can be written as: .. math:: \widetilde{h}(\ux) = h(\ux_0) + \mat{L} (\ux-\ux_0) where :math:`\mat{L} = (L_{ki})_{1 \leq k \leq \inputDim, 1\leq i \leq \inputDim}` is the Jacobian matrix evaluated at the point :math:`\ux_0`: .. math:: L_{ki} = \left(\frac{\partial h_k}{\partial x_i}\right)(\ux_0) for :math:`i \in \{1, ..., \inputDim\}` and :math:`j \in \{1, ..., \inputDim\}`. Second-order Taylor expansion ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The second-order Taylor expansion of :math:`h` at the point :math:`\ux_0` is the function :math:`\widetilde{h}: \Rset^{\inputDim} \rightarrow \Rset^q` defined for each marginal function :math:`h_k` of :math:`h` by the equation: .. math:: \widetilde{h}_k(\ux) = h_k(\ux_0) + \sum_{i=1}^{\inputDim} \left(\frac{\partial h_k}{\partial x_i}\right)(\ux_0) \left(x_i - x_{0,i} \right) + \frac{1}{2} \sum_{i,j = 1}^\inputDim \left( \frac{\partial^2 h_k}{\partial x_i \partial x_j}\right)(\ux_0)(x_i-x_{0,i})(x_j-x_{0,j}) which can be written as: .. math:: \widetilde{h}(\ux) = h(\ux_0) + \mat{L} (\ux-\ux_0) + \frac{1}{2} \left\langle \left\langle\mat{Q},\ux- \ux_0 \right \rangle, \ux-\ux_0 \right \rangle where :math:`\mat{Q} = (Q_{ijk})_{1 \leq i,j \leq \inputDim, 1\leq k \leq \inputDim}` is the Hessian tensor of order 3 evaluated at :math:`\ux_0`: .. math:: Q_{ijk} = \frac{\partial^2 h_k}{\partial x_i \partial x_j} (\ux_0) for :math:`i, j \in \{1, ..., \inputDim\}` and :math:`k \in \{1, ..., \inputDim\}`. The first and second order Taylor expansions are used in the following cases: - to evaluate the importance factors of the input point on the output: refer to :ref:`taylor_importance_factors`, - to get an approximation of the mean and the variance of the output: refer to :ref:`taylor_expansion_moments`. .. topic:: API: - See :class:`~openturns.LinearTaylor` - See :class:`~openturns.QuadraticTaylor` .. topic:: Examples: - See :doc:`/auto_meta_modeling/general_purpose_metamodels/plot_taylor_approximation`