.. _copula: Copulas ------- Let :math:`F` be a multivariate distribution function of dimension :math:`\inputDim` whose marginal distribution functions are :math:`F_1,\dots,F_{\inputDim}`. There exists a copula :math:`C: [0,1]^{\inputDim} \mapsto [0,1]` of dimension :math:`\inputDim` such that for :math:`\vect{x}\in \Rset^{\inputDim}`, we have: .. math:: \begin{aligned} F(\vect{x}) = C \left( F_1(x_1),\cdots,F_{\inputDim}(x_{\inputDim}) \right) \end{aligned} where :math:`F_i` is the cumulative distribution function of the margin :math:`X_i`. In the case of continuous marginal distributions, for all :math:`\vect{u}\in[0,1]^{\inputDim}`, the copula is uniquely defined by: .. math:: \begin{aligned} C(\vect{u}) & = F(F_1^{-1}(u_1),\hdots,F_{\inputDim}^{-1}(u_{\inputDim}))\\ & = \Prob{U_1 \leq u_1, \hdots, U_{\inputDim} \leq u_{\inputDim}} \end{aligned} where :math:`U_i = F_i(X_i)` is a random variable following the uniform distribution on :math:`[0,1]`. A copula of dimension :math:`\inputDim` is the restriction to the unit cube :math:`[0,1]^{\inputDim}` of a multivariate distribution function with uniform univariate marginals on :math:`[0,1]`. It has the following properties: - :math:`\forall \vect{u},\vect{v}\in[0,1]^{\inputDim}, |C(\vect{u})-C(\vect{v})|\leq \sum_{i=1}^{\inputDim} |u_i-v_i|`, - for all :math:`\vect{u}` with at least one component equal to 0, :math:`C(\vect{u})=0`, - :math:`C` is :math:`\inputDim`-increasing which means that: .. math:: \sum_{i_1=1}^2 \dots \sum_{i_{\inputDim}=1}^2 (-1)^{i_1 + \dots + i_{\inputDim}} C(x_{1i_1}, \dots, x_{\inputDim i_{\inputDim}})\geq 0 where :math:`x_{j1}=a_j` and :math:`x_{j2}=b_j` for all :math:`j \in \{1,\dots,\inputDim\}` and :math:`\vect{a}`, :math:`\vect{b}\in[0,1]^{\inputDim}`, :math:`\vect{a}\leq \vect{b}`, - :math:`\vect{u}` with all its components equal to 1 except :math:`u_k`, :math:`C(\vect{u})=u_k`. The copula represents the part of the joint cumulative density function which is not described by the marginal distributions. It models the dependence structure of the input variables. Note that a multivariate distribution is characterized by its marginal distributions and its copula. Therefore, a multivariate distribution can be built by choosing the marginals and the copula independently. .. topic:: API: - See the list of available :ref:`copulas `. .. topic:: Examples: - See :doc:`/auto_probabilistic_modeling/copulas/plot_create_copula` - See :doc:`/auto_probabilistic_modeling/copulas/plot_composed_copula` - See :doc:`/auto_probabilistic_modeling/copulas/plot_extract_copula` .. topic:: References: - Nelsen, *Introduction to Copulas* - Embrechts P., Lindskog F., Mc Neil A., *Modelling dependence with copulas and application to Risk Management*, ETZH 2001.