.. _field_function: Field functions --------------- A field function :math:`f_{dyn}:\cD \times \Rset^{\inputDim} \rightarrow \cD' \times \Rset^q` where :math:`\cD \in \Rset^n` and :math:`\cD' \in \Rset^p` is defined by: .. math:: :label: dynFct \begin{aligned} f_{dyn}(\vect{t}, \vect{x}) = (t'(\vect{t}), v'(\vect{t}, \vect{x})) \end{aligned} with :math:`t': \cD \rightarrow \cD'` and :math:`v': \cD \times \Rset^{\inputDim} \rightarrow \Rset^q`. A field function :math:`f_{dyn}` transforms a multivariate stochastic process: .. math:: \begin{aligned} X: \Omega \times \cD \rightarrow \Rset^{\inputDim}\end{aligned} where :math:`\cD \in \Rset^n` is discretized according to the :math:`\cM` into the multivariate stochastic process: .. math:: \begin{aligned} Y=f_{dyn}(X)\end{aligned} such that: .. math:: \begin{aligned} Y: \Omega \times \cD' \rightarrow \Rset^q\end{aligned} where the mesh :math:`\cD' \in \Rset^p` is discretized according to the :math:`\cM'`. A field function :math:`f_{dyn}` also acts on fields and produces fields of possibly different dimension (:math:`q\neq \inputDim`) and mesh (:math:`\cD \neq \cD'` or :math:`\cM \neq \cM'`). Value function ~~~~~~~~~~~~~~ A value function :math:`f_{spat}: \cD \times \Rset^{\inputDim} \rightarrow \cD \times \Rset^q` is a particular field function that leaves the mesh of a field invariant and can be defined using a function :math:`g : \Rset^{\inputDim} \rightarrow \Rset^q` such that: .. math:: :label: spatFunc \begin{aligned} f_{spat}(\vect{t}, \vect{x})=(\vect{t}, g(\vect{x}))\end{aligned} Let us note that the input dimension of :math:`f_{spat}` is still :math:`d`, the dimension of :math:`\vect{x}`. Its output dimension is equal to :math:`q`. The creation of a value function requires the function :math:`g` and the integer :math:`n`: the dimension of the vertices of the mesh :math:`\cM`. These data are required to test the compatibility of the dimensions when a composite process is created using the value function. Vertex value function ~~~~~~~~~~~~~~~~~~~~~ A vertex-value function :math:`f_{temp}: \cD \times \Rset^{\inputDim} \rightarrow \cD \times \Rset^q` is a particular field function that leaves the mesh of a field invariant and is defined by a function :math:`h : \Rset^n \times \Rset^{\inputDim} \rightarrow \Rset^q` such that: .. math:: :label: tempFunc \begin{aligned} f_{temp}(\vect{t}, \vect{x})=(\vect{t}, h(\vect{t},\vect{x}))\end{aligned} Let us note that the input dimension of :math:`f_{temp}` is still :math:`d`, the dimension of :math:`\vect{x}`. Its output dimension is equal to :math:`q`. .. topic:: API: - See :class:`~openturns.ValueFunction` - See :class:`~openturns.VertexValueFunction` .. topic:: Examples: - See :doc:`/auto_functional_modeling/field_functions/plot_value_function` - See :doc:`/auto_functional_modeling/field_functions/plot_vertexvalue_function` - See :doc:`/auto_meta_modeling/fields_metamodels/plot_fieldfunction_metamodel`