Poisson distribution ================================== .. plot:: :include-source: False import openturns as ot from matplotlib import pyplot as plt from openturns.viewer import View title = None if "Poisson" == "Bernoulli": distribution = ot.Bernoulli(0.7) elif "Poisson" == "Binomial": distribution = ot.Binomial(5, 0.2) elif "Poisson" == "Hypergeometric": distribution = ot.Hypergeometric(10, 4, 7) elif "Poisson" == "CumulativeDistributionNetwork": coll = [ot.Normal(2),ot.Dirichlet([0.5, 1.0, 1.5])] distribution = ot.CumulativeDistributionNetwork(coll, ot.BipartiteGraph([[0,1], [0,1]])) elif "Poisson" == "Histogram": distribution = ot.Histogram([-1.0, 0.5, 1.0, 2.0], [0.45, 0.4, 0.15]) elif "Poisson" == "KernelMixture": kernel = ot.Uniform() sample = ot.Normal().getSample(5) bandwidth = [1.0] distribution = ot.KernelMixture(kernel, bandwidth, sample) elif "Poisson" == "MaximumDistribution": coll = [ot.Uniform(2.5, 3.5), ot.LogUniform(1.0, 1.2), ot.Triangular(2.0, 3.0, 4.0)] distribution = ot.MaximumDistribution(coll) elif "Poisson" == "Multinomial": distribution = ot.Multinomial(5, [0.2]) elif "Poisson" == "RandomMixture": coll = [ot.Triangular(0.0, 1.0, 5.0), ot.Uniform(-2.0, 2.0)] weights = [0.8, 0.2] cst = 3.0 distribution = ot.RandomMixture(coll, weights, cst) elif "Poisson" == "SmoothedUniform": distribution = ot.SmoothedUniform(-1.0, 10.0, 1.0) elif "Poisson" == "TruncatedDistribution": distribution = ot.TruncatedDistribution(ot.Normal(2.0, 1.5), 1.0, 4.0) elif "Poisson" == "UserDefined": distribution = ot.UserDefined([[1.0], [2.0], [3.0]], [0.4, 0.5, 1.0]) elif "Poisson" == "ZipfMandelbrot": distribution = ot.ZipfMandelbrot(10, 2.5, 0.3) elif "Poisson" == "Normal": cov = ot.CovarianceMatrix([[1.0, -0.5], [-0.5, 1.0]]) distribution = ot.Normal([0.0, 0.0], cov) title = "Normal dist. with correlation coefficient {}".format(cov[0, 1]) else: distribution = ot.Poisson() dimension = distribution.getDimension() if title is None: title = str(distribution)[:100].split("\n")[0] if dimension == 1: distribution.setDescription(["$x$"]) pdf_graph = distribution.drawPDF() cdf_graph = distribution.drawCDF() fig = plt.figure(figsize=(10, 4)) pdf_axis = fig.add_subplot(121) cdf_axis = fig.add_subplot(122) View(pdf_graph, figure=fig, axes=[pdf_axis], add_legend=False) View(cdf_graph, figure=fig, axes=[cdf_axis], add_legend=False) fig.suptitle(title) elif dimension == 2: grid = ot.GridLayout(1, 2) pdf_graph = distribution.drawPDF() pdf_contour = pdf_graph.getDrawable(0).getImplementation() pdf_contour.setColorBarPosition("") pdf_contour.setColorMapNorm("rank") pdf_graph.setDrawable(pdf_contour, 0) cdf_graph = distribution.drawCDF() cdf_contour = cdf_graph.getDrawable(0).getImplementation() cdf_contour.setColorBarPosition("") cdf_contour.setColorMapNorm("rank") cdf_graph.setDrawable(cdf_contour, 0) grid.setGraph(0, 0, pdf_graph) grid.setGraph(0, 1, cdf_graph) grid.setTitle(title) fig = View(grid).getFigure() fig.axes[0].set_title("PDF") fig.axes[1].set_title("CDF") .. currentmodule:: openturns .. autoclass:: Poisson :exclude-members: __call__, thisown .. automethod:: __init__ .. minigallery:: openturns.Poisson :add-heading: Examples using the class