Kolmogorov-Smirnov : understand the p-valueΒΆ

In this example, we illustrate the calculation of the Kolmogorov-Smirnov (KS) p-value.

  • We generate a sample from a Gaussian distribution.

  • We create a uniform distribution with known parameters.

  • The Kolmogorov-Smirnov statistics is computed and plot on the empirical cumulated distribution function.

  • We plot the p-value as the area under the part of the curve exceeding the observed statistics.

import openturns as ot
import openturns.viewer as viewer
from matplotlib import pylab as plt

ot.Log.Show(ot.Log.NONE)

We generate a sample from a standard Gaussian distribution.

dist = ot.Normal()
samplesize = 10
sample = dist.getSample(samplesize)
testdistribution = ot.Normal()
result = ot.FittingTest.Kolmogorov(sample, testdistribution, 0.01)
pvalue = result.getPValue()
pvalue
0.85826279363259
KSstat = result.getStatistic()
KSstat
0.1775544614470713

Compute exact Kolmogorov PDF.

Create a function which returns the CDF given the KS distance.

def pKolmogorovPy(x):
    y = ot.DistFunc.pKolmogorov(samplesize, x[0])
    return [y]
pKolmogorov = ot.PythonFunction(1, 1, pKolmogorovPy)

Create a function which returns the KS PDF given the KS distance: use the gradient method.

def kolmogorovPDF(x):
    return pKolmogorov.gradient(x)[0, 0]
def dKolmogorov(x):
    """
    Compute Kolmogorov PDF for given x.
    x : a Sample, the points where the PDF must be evaluated
    Reference
    Numerical Derivatives in Scilab, Michael Baudin, May 2009
    """
    n = x.getSize()
    y = ot.Sample(n, 1)
    for i in range(n):
        y[i, 0] = kolmogorovPDF(x[i])
    return y
def linearSample(xmin, xmax, npoints):
    """Returns a sample created from a regular grid
    from xmin to xmax with npoints points."""
    step = (xmax - xmin) / (npoints - 1)
    rg = ot.RegularGrid(xmin, step, npoints)
    vertices = rg.getVertices()
    return vertices
n = 1000  # Number of points in the plot
s = linearSample(0.001, 0.999, n)
y = dKolmogorov(s)

Create a regular grid starting from the observed KS statistics.

nplot = 100
x = linearSample(KSstat, 0.6, nplot)

Compute the bounds to fill: the lower vertical bound is 0 and the upper vertical bound is the KS PDF.

vLow = [0.0] * nplot
vUp = [pKolmogorov.gradient(x[i])[0, 0] for i in range(nplot)]
boundsPoly = ot.Polygon.FillBetween(x.asPoint(), vLow, vUp)
boundsPoly.setLegend("pvalue = %.4f" % (pvalue))
curve = ot.Curve(s, y)
curve.setLegend("Exact distribution")
curveStat = ot.Curve([KSstat, KSstat], [0.0, kolmogorovPDF([KSstat])])
curveStat.setColor("red")
curveStat.setLegend("KS-statistics = %.4f" % (KSstat))
graph = ot.Graph(
    "Kolmogorov-Smirnov distribution (known parameters)",
    "KS-Statistics",
    "PDF",
    True,
    "upper right",
)
graph.setLegends(["Empirical distribution"])
graph.add(curve)
graph.add(curveStat)
graph.add(boundsPoly)
graph.setTitle("Kolmogorov-Smirnov distribution (known parameters)")
view = viewer.View(graph)
plt.show()
Kolmogorov-Smirnov distribution (known parameters)

We observe that the p-value is the area of the curve which corresponds to the KS distances greater than the observed KS statistics.