Value function

A value function f_{value}: \mathcal{D} \times \mathbb{R}^d \rightarrow \mathcal{D} \times \mathbb{R}^q is a particular field function that lets invariant the mesh of a field and defined by a function g : \mathbb{R}^d  \rightarrow \mathbb{R}^q such that:

\begin{aligned} f_{value}(\underline{t}, \underline{x})=(\underline{t}, g(\underline{x}))\end{aligned}

Let’s note that the input dimension of f_{value} still designs the dimension of \underline{x} : d. Its output dimension is equal to q.

The creation of the ValueFunction object requires the function g and the integer n: the dimension of the vertices of the mesh \mathcal{M}. This data is required for tests on the compatibility of dimension when a composite process is created using the spatial function.

The use case illustrates the creation of a spatial (field) function from the function g: \mathbb{R}^2  \rightarrow \mathbb{R}^2 such as :

\begin{aligned}
  g(\underline{x})=(x_1^2, x_1+x_2)
\end{aligned}

import openturns as ot

ot.Log.Show(ot.Log.NONE)

Create a mesh

N = 100
mesh = ot.RegularGrid(0.0, 1.0, N)

Create the function that acts the values of the mesh

g = ot.SymbolicFunction(["x1", "x2"], ["x1^2", "x1+x2"])

Create the field function

f = ot.ValueFunction(g, mesh)

Evaluate f

inF = ot.Normal(2).getSample(N)
outF = f(inF)

# print input/output at first mesh nodes
xy = inF
xy.stack(outF)
xy[:5]
X0X1y0y1
00.34577630.24181140.11956130.5875878
1-0.41522591.5664190.17241261.151193
2-0.92603810.27915660.8575466-0.6468815
31.393587-1.6978781.942086-0.3042903
40.42284930.6019590.17880151.024808