Note
Go to the end to download the full example code.
Create a random vectorΒΆ
In this example we are going to create a distribution or copula.
The way to go is inheriting the PythonRandomVector
class and overload its methods:
:meth:`~openturns.PythonRandomVector.getRealization
:meth:`~openturns.PythonRandomVector.getSample
:meth:`~openturns.PythonRandomVector.getMean
:meth:`~openturns.PythonRandomVector.getCovariance
import openturns as ot
ot.Log.Show(ot.Log.NONE)
Inherit PythonRandomVector
class RVEC(ot.PythonRandomVector):
def __init__(self):
super(RVEC, self).__init__(2)
self.setDescription(["R", "S"])
def getRealization(self):
X = [ot.RandomGenerator.Generate(), 2.0 + ot.RandomGenerator.Generate()]
return X
def getSample(self, size):
X = []
for i in range(size):
X.append(
[ot.RandomGenerator.Generate(), 2.0 + ot.RandomGenerator.Generate()]
)
return X
def getMean(self):
return [0.5, 2.5]
def getCovariance(self):
return [[1.0, 0.0], [0.0, 1.0]]
Instantiate the distribution
randomVector = ot.RandomVector(RVEC())
Get a sample
randomVector.getSample(5)
Get mean
randomVector.getMean()
Compute the probability contained in an interval
randomVector.getCovariance()