OrthogonalProductFunctionFactory¶
- class OrthogonalProductFunctionFactory(*args)¶
Base class for orthogonal multivariate functions.
- Parameters:
- functionslist of
OrthogonalUniVariateFunctionFamily
List of orthogonal univariate function factories with the same dimension as the orthogonal basis.
- enumerateFunction
EnumerateFunction
, optional Associates to an integer its multi-index image in the dimension, which is the dimension of the basis. This multi-index represents the collection of degrees of the univariate polynomials.
- functionslist of
Methods
add
(elt)Add a function.
build
(*args)Get the term of the basis collection at a given index or multi-indices.
Accessor to the object's name.
Return the enumerate function.
Get the collection of univariate orthogonal function families.
Get the input dimension of the Basis.
getMarginal
(indices)Get the marginal orthogonal functions.
Get the measure upon which the basis is orthogonal.
getName
()Accessor to the object's name.
Get the output dimension of the Basis.
getSize
()Get the size of the Basis.
getSubBasis
(indices)Get a sub-basis of the Basis.
hasName
()Test if the object is named.
isFinite
()Tell whether the basis is finite.
Tell whether the basis is orthogonal.
Tell whether the basis is a tensor product
setName
(name)Accessor to the object's name.
See also
Notes
OrthogonalProductFunctionFactory is a particular case of implementation of the
OrthogonalBasis
in the case of polynomial chaos expansion. It provides to the OrthogonalBasis the persistent types of the univariate orthogonal polynomials (e.g. Hermite, Legendre, Laguerre and Jacobi) needed to determine the distribution measure of projection of the input variable. Let’s note that the exact hessian and gradient have been implemented for the product of polynomials. To facilitate the construction of the basis it is recommended to use the classStandardDistributionPolynomialFactory
.Examples
Create from a list of orthogonal functions.
>>> import openturns as ot >>> funcColl = [ot.HaarWaveletFactory(), ot.FourierSeriesFactory()] >>> productBasis = ot.OrthogonalProductFunctionFactory(funcColl)
Set an enumerate function.
>>> funcColl = [ot.HaarWaveletFactory(), ot.FourierSeriesFactory()] >>> inputDimension = len(funcColl) >>> enumerateFunction = ot.LinearEnumerateFunction(inputDimension) >>> productBasis = ot.OrthogonalProductFunctionFactory(funcColl, enumerateFunction)
- __init__(*args)¶
- build(*args)¶
Get the term of the basis collection at a given index or multi-indices.
- Parameters:
- indexint
Indicates the term of the basis which must be constructed. In other words, index is used by a bijection from to (with the dimension of the basis). The bijection is detailed in
EnumerateFunction
.- indicessequence of int
Indicates the term of the basis which must be constructed. In other words, indices is used by a bijection from to (with the dimension of the basis). The bijection is the inverse of
EnumerateFunction
.
- Returns:
- function
Function
The term of the basis collection at the index index or the inverse of indices.
- function
Examples
>>> import openturns as ot >>> # Create an orthogonal basis >>> polynomialCollection = [ot.LegendreFactory(), ot.LaguerreFactory(), ot.HermiteFactory()] >>> productBasis = ot.OrthogonalProductPolynomialFactory(polynomialCollection) >>> termBasis = productBasis.build(4) >>> print(termBasis.getEvaluation()) -1.11803 + 3.3541 * x0^2 >>> termBasis = productBasis.build(5) >>> print(termBasis.getEvaluation()) 1.73205 * x0 * (-1 + x1) >>> termBasis2 = productBasis.build([1, 1, 0]) >>> print(termBasis2.getEvaluation()) 1.73205 * x0 * (-1 + x1)
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getEnumerateFunction()¶
Return the enumerate function.
- Returns:
- enumerateFunction
EnumerateFunction
Enumerate function that translates unidimensional indices into multidimensional indices.
- enumerateFunction
- getFunctionFamilyCollection()¶
Get the collection of univariate orthogonal function families.
- Returns:
- polynomialFamilylist of
OrthogonalUniVariateFunctionFamily
List of orthogonal univariate function families.
- polynomialFamilylist of
- getInputDimension()¶
Get the input dimension of the Basis.
- Returns:
- inDimint
Input dimension of the functions.
- getMarginal(indices)¶
Get the marginal orthogonal functions.
- Parameters:
- indicessequence of int,
List of marginal indices of the input variables.
- Returns:
- functionFamilylistlist of
OrthogonalUniVariateFunctionFamily
The marginal orthogonal functions.
- functionFamilylistlist of
Examples
>>> import openturns as ot >>> funcColl = [ot.HaarWaveletFactory(), ot.FourierSeriesFactory(), ot.HaarWaveletFactory()] >>> productBasis = ot.OrthogonalProductFunctionFactory(funcColl) >>> marginalProduct = productBasis.getMarginal([0, 2]) # [ot.HaarWaveletFactory(), ot.HaarWaveletFactory()]
- getMeasure()¶
Get the measure upon which the basis is orthogonal.
- Returns:
- measure
Distribution
Measure upon which the basis is orthogonal.
- measure
Examples
>>> import openturns as ot >>> # Create an orthogonal basis >>> polynomialCollection = [ot.LegendreFactory(), ot.LaguerreFactory(), ot.HermiteFactory()] >>> productBasis = ot.OrthogonalProductPolynomialFactory(polynomialCollection) >>> measure = productBasis.getMeasure() >>> print(measure.getMarginal(0)) Uniform(a = -1, b = 1) >>> print(measure.getMarginal(1)) Gamma(k = 1, lambda = 1, gamma = 0) >>> print(measure.getMarginal(2)) Normal(mu = 0, sigma = 1)
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getOutputDimension()¶
Get the output dimension of the Basis.
- Returns:
- outDimint
Output dimension of the functions.
- getSize()¶
Get the size of the Basis.
- Returns:
- sizeint
Size of the Basis.
- getSubBasis(indices)¶
Get a sub-basis of the Basis.
- Parameters:
- indiceslist of int
Indices of the terms of the Basis put in the sub-basis.
- Returns:
- subBasislist of
Function
Functions defining a sub-basis.
- subBasislist of
Examples
>>> import openturns as ot >>> dimension = 3 >>> input = ['x0', 'x1', 'x2'] >>> functions = [] >>> for i in range(dimension): ... functions.append(ot.SymbolicFunction(input, [input[i]])) >>> basis = ot.Basis(functions) >>> subbasis = basis.getSubBasis([1]) >>> print(subbasis[0].getEvaluation()) [x0,x1,x2]->[x1]
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- isFinite()¶
Tell whether the basis is finite.
- Returns:
- isFinitebool
True if the basis is finite.
- isOrthogonal()¶
Tell whether the basis is orthogonal.
- Returns:
- isOrthogonalbool
True if the basis is orthogonal.
- isTensorProduct()¶
Tell whether the basis is a tensor product
- Returns:
- isTensorProductbool
True if the basis is a tensor product.
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.