SpaceFillingMinDist

class SpaceFillingMinDist(*args)

Space filling minimal distance criterion.

Methods

evaluate(sample)

Compute the MinDist criterion for a specific design.

getClassName()

Accessor to the object's name.

getName()

Accessor to the object's name.

hasName()

Test if the object is named.

isMinimizationProblem()

Minimization flag accessor.

perturbLHS(oldDesign, oldCriterion, row1, ...)

Elementary perturbation.

setName(name)

Accessor to the object's name.

Notes

Compute the criterion based on the minimal distance of sample points:

\begin{equation*}
  \phi_{min}(\mat{X}) = \min_{i \neq j} \norm{ \vect{x}^{(i)} - \vect{x}^{(j)} }
\end{equation*}

If at least one of the sample points does not belong to the unit cube (i.e. not all components belong to the interval [0,1]), then the whole sample is rescaled. Letting \vect{M} (resp. \vect{m}) denote the point containing the component-wise maximum (resp. minimum) values of the sample, the actual formula is in this case:

\begin{equation*}
  \phi_{min}(X) = \min_{i \neq j} \norm{ \frac{\vect{x}^{(i)} - \vect{x}^{(j)}}{\vect{M} - \vect{m}} }
\end{equation*}

__init__(*args)
evaluate(sample)

Compute the MinDist criterion for a specific design.

Parameters:
designSample or 2-d array like

The design

Returns:
critfloat

The MinDist criterion

Examples

>>> import openturns as ot
>>> # Build an LHS using openturns class
>>> lhs = ot.LHSExperiment(ot.Uniform(), 100)
>>> design = lhs.generate()
>>> # Compute the MinDist criterion
>>> crit = ot.SpaceFillingMinDist().evaluate(design)
getClassName()

Accessor to the object’s name.

Returns:
class_namestr

The object class name (object.__class__.__name__).

getName()

Accessor to the object’s name.

Returns:
namestr

The name of the object.

hasName()

Test if the object is named.

Returns:
hasNamebool

True if the name is not empty.

isMinimizationProblem()

Minimization flag accessor.

Returns:
isMinimizationbool

Whether the problem is a minimization.

perturbLHS(oldDesign, oldCriterion, row1, row2, column)

Elementary perturbation.

Parameters:
designSample

The design to perturb (in-place)

oldCriterionfloat

The previous value of the criterion

row1int

First row index

row2int

Second row index

Returns:
criterionfloat

The value of the criterion

setName(name)

Accessor to the object’s name.

Parameters:
namestr

The name of the object.

Examples using the class

Optimize an LHS design of experiments

Optimize an LHS design of experiments