Tensor¶
- class Tensor(*args)¶
- Tensor. - Available constructors:
- Tensor(n_rows, n_columns, n_sheets) - Tensor(n_rows, n_columns, n_sheets, values) - Tensor(sequence) 
 - Parameters:
- n_rowsint, 
- Number of rows. 
- n_columnsint, 
- Number of columns. 
- n_sheetsint, 
- Number of sheets. 
- valuessequence of float with size , optional 
- Values. OpenTURNS uses column-major ordering (like Fortran) for reshaping the flat list of values. If not mentioned, a zero tensor is created. 
- sequencesequence of float
- Values. 
 
- n_rowsint, 
 - Methods - clean(threshold)- Set elements smaller than a threshold to zero. - Accessor to the object's name. - getId()- Accessor to the object's id. - Accessor to the underlying implementation. - getName()- Accessor to the object's name. - Accessor to the number of columns. - Accessor to the number of rows. - Accessor to the number of sheets. - getSheet(k)- Get a sheet of the tensor. - isEmpty()- Tell if the tensor is empty. - setName(name)- Accessor to the object's name. - setSheet(k, m)- Set a matrix as a sheet of the complex tensor. - Examples - >>> import openturns as ot >>> print(ot.Tensor(2, 2, 2, [1])) sheet #0 [[ 1 0 ] [ 0 0 ]] sheet #1 [[ 0 0 ] [ 0 0 ]] >>> T = ot.Tensor(2, 2, 3, range(2*2*3)) >>> print(T) sheet #0 [[ 0 2 ] [ 1 3 ]] sheet #1 [[ 4 6 ] [ 5 7 ]] sheet #2 [[ 8 10 ] [ 9 11 ]] - Get or set terms: - >>> print(T[0, 0, 0]) 0.0 >>> T[0, 0, 0] = 1. >>> print(T[0, 0, 0]) 1.0 - Create an openturns tensor from a sequence: - >>> T = ot.Tensor([[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], [[7.0, 8.0, 9.0], [10.0, 11.0, 12.0]]]) >>> print(T) sheet #0 [[ 1 4 ] [ 7 10 ]] sheet #1 [[ 2 5 ] [ 8 11 ]] sheet #2 [[ 3 6 ] [ 9 12 ]] - __init__(*args)¶
 - clean(threshold)¶
- Set elements smaller than a threshold to zero. - Parameters:
- thresholdfloat
- Threshold for zeroing elements. 
 
- Returns:
- cleaned_tensorTensor
- Input tensor with elements smaller than the threshold set to zero. 
 
- cleaned_tensor
 
 - getClassName()¶
- Accessor to the object’s name. - Returns:
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - getId()¶
- Accessor to the object’s id. - Returns:
- idint
- Internal unique identifier. 
 
 
 - getImplementation()¶
- Accessor to the underlying implementation. - Returns:
- implImplementation
- A copy of the underlying implementation object. 
 
 
 - getName()¶
- Accessor to the object’s name. - Returns:
- namestr
- The name of the object. 
 
 
 - getNbColumns()¶
- Accessor to the number of columns. - Returns:
- n_columnsint
 
 
 - getNbRows()¶
- Accessor to the number of rows. - Returns:
- n_rowsint
 
 
 - getNbSheets()¶
- Accessor to the number of sheets. - Returns:
- n_sheetsint
 
 - Examples - >>> import openturns as ot >>> T = ot.Tensor(2, 2, 3, range(2*2*3)) >>> print(T.getNbSheets()) 3 
 - getSheet(k)¶
- Get a sheet of the tensor. - Parameters:
- sheetint
- Index of sheet element. 
 
- Returns:
- MMatrix
- The sheet element. 
 
- M
 - Examples - >>> import openturns as ot >>> T = ot.Tensor(2, 2, 3, range(2*2*3)) >>> print(T.getSheet(1)) [[ 4 6 ] [ 5 7 ]] 
 - isEmpty()¶
- Tell if the tensor is empty. - Returns:
- is_emptybool
- True if the tensor contains no element. 
 
 - Examples - >>> import openturns as ot >>> T = ot.Tensor() >>> T.isEmpty() True 
 - setName(name)¶
- Accessor to the object’s name. - Parameters:
- namestr
- The name of the object. 
 
 
 - setSheet(k, m)¶
- Set a matrix as a sheet of the complex tensor. - Parameters:
- sheetint
- Index of sheet element. 
- MMatrix
- The matrix. 
 
 - Examples - >>> import openturns as ot >>> T = ot.Tensor(2, 2, 3, range(2*2*3)) >>> print(T) sheet #0 [[ 0 2 ] [ 1 3 ]] sheet #1 [[ 4 6 ] [ 5 7 ]] sheet #2 [[ 8 10 ] [ 9 11 ]] >>> M = ot.Matrix([[1, 2],[3, 4]]) >>> T.setSheet(0, M) >>> print(T) sheet #0 [[ 1 2 ] [ 3 4 ]] sheet #1 [[ 4 6 ] [ 5 7 ]] sheet #2 [[ 8 10 ] [ 9 11 ]] 
 
 OpenTURNS
      OpenTURNS
    