.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_data_analysis/manage_data_and_samples/plot_sample_manipulation.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_data_analysis_manage_data_and_samples_plot_sample_manipulation.py: Sample manipulation =================== .. GENERATED FROM PYTHON SOURCE LINES 7-8 This example will describe the main statistical functionalities on data through the :class:`~openturns.Sample` object. The Sample is an output variable of interest. .. GENERATED FROM PYTHON SOURCE LINES 10-13 .. code-block:: Python import openturns as ot .. GENERATED FROM PYTHON SOURCE LINES 14-16 A typical example ----------------- .. GENERATED FROM PYTHON SOURCE LINES 18-22 A recurring issue in uncertainty quantification is to perform analysis on an output variable of interest `Y` obtained through a model `f` and input parameters `X`. Here we shall consider the input parameters as two independent standard Normal distributions :math:`X=(X_1, X_2)`. We therefore use an :class:`~openturns.IndependentCopula` to describe the link between the two marginals. .. GENERATED FROM PYTHON SOURCE LINES 22-27 .. code-block:: Python # input parameters inputDist = ot.JointDistribution([ot.Normal()] * 2, ot.IndependentCopula(2)) inputDist.setDescription(["X1", "X2"]) .. GENERATED FROM PYTHON SOURCE LINES 28-29 We create a vector from the 2d-distribution created before : .. GENERATED FROM PYTHON SOURCE LINES 31-34 .. code-block:: Python inputVector = ot.RandomVector(inputDist) .. GENERATED FROM PYTHON SOURCE LINES 35-44 Suppose our model `f` is known and reads as : .. math:: f(x) = \begin{pmatrix} x_1^2 + x_2 \\ x_1 + x_2^2 \end{pmatrix} We define our model `f` with a :class:`~openturns.SymbolicFunction` .. GENERATED FROM PYTHON SOURCE LINES 46-48 .. code-block:: Python f = ot.SymbolicFunction(["x1", "x2"], ["x1^2+x2", "x2^2+x1"]) .. GENERATED FROM PYTHON SOURCE LINES 49-50 Our output vector is :math:`Y = f(X)`, the image of the inputVector by the model .. GENERATED FROM PYTHON SOURCE LINES 50-52 .. code-block:: Python outputVector = ot.CompositeRandomVector(f, inputVector) .. GENERATED FROM PYTHON SOURCE LINES 53-54 We can now get a sample out of `Y`, that is realizations (here 1000) of the random outputVector .. GENERATED FROM PYTHON SOURCE LINES 54-57 .. code-block:: Python size = 1000 sample = outputVector.getSample(size) .. GENERATED FROM PYTHON SOURCE LINES 58-59 The sample may be seen as a matrix of size :math:`1000 \times 2`. We print the 5 first samples (out of 1000) : .. GENERATED FROM PYTHON SOURCE LINES 61-64 .. code-block:: Python sample[:5] .. raw:: html
y0y1
00.55195470.6413422
12.069226-1.048988
2-2.2119245.340953
30.77737351.66219
44.325861-1.994259


.. GENERATED FROM PYTHON SOURCE LINES 65-71 Basic operations on samples --------------------------- We have access to basic information about a sample such as - minimum and maximum per component .. GENERATED FROM PYTHON SOURCE LINES 71-73 .. code-block:: Python sample.getMin(), sample.getMax() .. rst-class:: sphx-glr-script-out .. code-block:: none (class=Point name=Unnamed dimension=2 values=[-3.24513,-2.98342], class=Point name=Unnamed dimension=2 values=[10.6987,10.5037]) .. GENERATED FROM PYTHON SOURCE LINES 74-76 - the range per component (max-min) .. GENERATED FROM PYTHON SOURCE LINES 76-78 .. code-block:: Python sample.computeRange() .. raw:: html
class=Point name=Unnamed dimension=2 values=[13.9438,13.4871]


.. GENERATED FROM PYTHON SOURCE LINES 79-81 More elaborate functionalities are also available : .. GENERATED FROM PYTHON SOURCE LINES 83-85 - get the median per component .. GENERATED FROM PYTHON SOURCE LINES 85-87 .. code-block:: Python sample.computeMedian() .. raw:: html
class=Point name=Unnamed dimension=2 values=[0.631033,0.715266]


.. GENERATED FROM PYTHON SOURCE LINES 88-90 - compute the covariance .. GENERATED FROM PYTHON SOURCE LINES 90-92 .. code-block:: Python sample.computeCovariance() .. raw:: html

[[ 2.77895 0.0913307 ]
[ 0.0913307 3.30989 ]]



.. GENERATED FROM PYTHON SOURCE LINES 93-95 - get the empirical 0.95 quantile per component .. GENERATED FROM PYTHON SOURCE LINES 95-97 .. code-block:: Python sample.computeQuantilePerComponent(0.95) .. raw:: html
class=Point name=Unnamed dimension=2 values=[3.96521,4.45879]


.. GENERATED FROM PYTHON SOURCE LINES 98-100 - get the value of the empirical CDF at a point .. GENERATED FROM PYTHON SOURCE LINES 100-104 .. code-block:: Python point = [1.1, 2.2] sample.computeEmpiricalCDF(point) .. rst-class:: sphx-glr-script-out .. code-block:: none 0.569 .. GENERATED FROM PYTHON SOURCE LINES 105-107 Estimate the statistical moments -------------------------------- .. GENERATED FROM PYTHON SOURCE LINES 109-110 Oftentimes, we need to estimate the first moments of the output data. We can then estimate statistical moments from the output sample : .. GENERATED FROM PYTHON SOURCE LINES 112-114 - estimate the moment of order 1 : mean .. GENERATED FROM PYTHON SOURCE LINES 114-116 .. code-block:: Python sample.computeMean() .. raw:: html
class=Point name=Unnamed dimension=2 values=[0.928558,1.01799]


.. GENERATED FROM PYTHON SOURCE LINES 117-119 - estimate the standard deviation for each component .. GENERATED FROM PYTHON SOURCE LINES 119-121 .. code-block:: Python sample.computeStandardDeviation() .. raw:: html
class=Point name=Unnamed dimension=2 values=[1.66702,1.81931]


.. GENERATED FROM PYTHON SOURCE LINES 122-124 - estimate the moment of order 2 : variance .. GENERATED FROM PYTHON SOURCE LINES 124-126 .. code-block:: Python sample.computeVariance() .. raw:: html
class=Point name=Unnamed dimension=2 values=[2.77895,3.30989]


.. GENERATED FROM PYTHON SOURCE LINES 127-129 - estimate the moment of order 3 : skewness .. GENERATED FROM PYTHON SOURCE LINES 129-131 .. code-block:: Python sample.computeSkewness() .. raw:: html
class=Point name=Unnamed dimension=2 values=[1.40965,1.73437]


.. GENERATED FROM PYTHON SOURCE LINES 132-134 - estimate the moment of order 4 : kurtosis .. GENERATED FROM PYTHON SOURCE LINES 134-136 .. code-block:: Python sample.computeKurtosis() .. raw:: html
class=Point name=Unnamed dimension=2 values=[6.84373,7.96431]


.. GENERATED FROM PYTHON SOURCE LINES 137-139 Test the correlation -------------------- .. GENERATED FROM PYTHON SOURCE LINES 141-145 Some statistical test for correlation are available : - get the sample linear correlation matrix : .. GENERATED FROM PYTHON SOURCE LINES 145-147 .. code-block:: Python sample.computeLinearCorrelation() .. raw:: html

[[ 1 0.0301141 ]
[ 0.0301141 1 ]]



.. GENERATED FROM PYTHON SOURCE LINES 148-150 - get the sample Kendall correlation matrix : .. GENERATED FROM PYTHON SOURCE LINES 150-152 .. code-block:: Python sample.computeKendallTau() .. raw:: html

[[ 1 -0.010026 ]
[ -0.010026 1 ]]



.. GENERATED FROM PYTHON SOURCE LINES 153-155 - get the sample Spearman correlation matrix : .. GENERATED FROM PYTHON SOURCE LINES 155-156 .. code-block:: Python sample.computeSpearmanCorrelation() .. raw:: html

[[ 1 0.00483728 ]
[ 0.00483728 1 ]]



.. _sphx_glr_download_auto_data_analysis_manage_data_and_samples_plot_sample_manipulation.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_sample_manipulation.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_sample_manipulation.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_sample_manipulation.zip `