Note
Go to the end to download the full example code.
Test Normality¶
Normal fitting test using the Henry line¶
In this paragraph we perform a visual goodness-of-fit test for a univariate Normal distribution using the Henry line test, which is the QQ plot adapted for Gaussian distributions.
import openturns as ot
import openturns.viewer as viewer
We first create the data :
distribution = ot.Normal(2.0, 0.5)
sample1 = distribution.getSample(100)
We draw the Henry line plot and expect a good fitting :
graph = ot.VisualTest.DrawHenryLine(sample1)
view = viewer.View(graph)
For comparison sake e draw the Henry line plot for a Beta distribution. The result is expected to be bad.
sample2 = ot.Beta(0.7, 0.9, 0.0, 2.0).getSample(100)
graph = ot.VisualTest.DrawHenryLine(sample2)
view = viewer.View(graph)
Normality tests¶
We use two tests to check whether a sample follows a Normal distribution :
the Anderson-Darling test
the Cramer-Von Mises test
We first generate two samples, one from a standard unit Gaussian and another from a Gumbel
distribution with parameters and
.
sample1 = ot.Normal().getSample(200)
sample2 = ot.Gumbel().getSample(200)
We test the normality of the sample. We can display the result of the test as a yes/no answer with the getBinaryQualityMeasure. We can retrieve the p-value and the threshold with the getPValue and getThreshold methods.
test_result = ot.NormalityTest.AndersonDarlingNormal(sample1)
print(
"Component is normal?",
test_result.getBinaryQualityMeasure(),
"p-value=%.6g" % test_result.getPValue(),
"threshold=%.6g" % test_result.getThreshold(),
)
Component is normal? True p-value=0.382536 threshold=0.05
test_result = ot.NormalityTest.AndersonDarlingNormal(sample2)
print(
"Component is normal?",
test_result.getBinaryQualityMeasure(),
"p-value=%.6g" % test_result.getPValue(),
"threshold=%.6g" % test_result.getThreshold(),
)
Component is normal? False p-value=1.11564e-05 threshold=0.05
test_result = ot.NormalityTest.CramerVonMisesNormal(sample1)
print(
"Component is normal?",
test_result.getBinaryQualityMeasure(),
"p-value=%.6g" % test_result.getPValue(),
"threshold=%.6g" % test_result.getThreshold(),
)
Component is normal? True p-value=0.297849 threshold=0.05
test_result = ot.NormalityTest.CramerVonMisesNormal(sample2)
print(
"Component is normal?",
test_result.getBinaryQualityMeasure(),
"p-value=%.6g" % test_result.getPValue(),
"threshold=%.6g" % test_result.getThreshold(),
)
Component is normal? False p-value=3.24486e-05 threshold=0.05