FejerAlgorithm¶
(Source code
, svg
)
- class FejerAlgorithm(*args)¶
Fejer Integration algorithm
The FejerAlgorithm algorithm enables to approximate the definite integral:
with
,
using a the approximation:
where
is the
-th node of the
points and
are the associated weight.
Refer to
FejerExperiment
for the expression of nodes and weights.- Available constructors:
FejerAlgorithm(dimension, method)
FejerAlgorithm(discretization, method)
- Parameters:
- dimensionint,
The dimension of the functions to integrate. The default discretization is FejerAlgorithm-DefaultMarginalIntegrationPointsNumber in each dimension, see
ResourceMap
.- discretizationsequence of int
The number of nodes in each dimension. The sequence must be non-empty and must contain only positive values.
- methodint, optional
Integer used to select the method of integration. (Amongst ot.FejerAlgorithm.FEJERTYPE1, ot.FejerAlgorithm.FEJERTYPE2 and ot.FejerAlgorithm.CLENSHAWCURTIS).
Default is ot.FejerAlgorithm.CLENSHAWCURTIS
- dimensionint,
Methods
Accessor to the object's name.
Accessor to the discretization of the tensorized rule.
getName
()Accessor to the object's name.
getNodes
()Accessor to the integration nodes.
Accessor to the integration weights.
hasName
()Test if the object is named.
integrate
(*args)Evaluation of the integral of
on an interval.
integrateWithNodes
(function, interval)Evaluation of the integral of
on an interval with nodes.
setName
(name)Accessor to the object's name.
Examples
Create a FejerAlgorithm algorithm:
>>> import openturns as ot >>> algo = ot.FejerAlgorithm(2) >>> algo = ot.FejerAlgorithm([2, 4, 5])
- __init__(*args)¶
- getClassName()¶
Accessor to the object’s name.
- Returns:
- class_namestr
The object class name (object.__class__.__name__).
- getDiscretization()¶
Accessor to the discretization of the tensorized rule.
- Returns:
- discretization
Indices
The number of integration point in each dimension.
- discretization
- getName()¶
Accessor to the object’s name.
- Returns:
- namestr
The name of the object.
- getNodes()¶
Accessor to the integration nodes.
- Returns:
- nodes
Sample
The tensorized FejerAlgorithm integration nodes on
where
is the dimension of the integration algorithm.
- nodes
- getWeights()¶
Accessor to the integration weights.
- Returns:
- weights
Point
The tensorized FejerAlgorithm integration weights on
where
is the dimension of the integration algorithm.
- weights
- hasName()¶
Test if the object is named.
- Returns:
- hasNamebool
True if the name is not empty.
- integrate(*args)¶
Evaluation of the integral of
on an interval.
- Available usages:
integrate(f, interval)
integrate(f, interval, xi)
- Parameters:
- Returns:
- value
Point
Approximation of the integral.
- value
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x'], ['sin(x)']) >>> a = -2.5 >>> b = 4.5 >>> algoF1 = ot.FejerAlgorithm([10]) >>> value = algoF1.integrate(f, ot.Interval(a, b))[0]
- integrateWithNodes(function, interval)¶
Evaluation of the integral of
on an interval with nodes.
- Parameters:
- Returns:
Notes
The nodes are those associated to the function:
.
Examples
>>> import openturns as ot >>> f = ot.SymbolicFunction(['x'], ['sin(x)']) >>> a = -2.5 >>> b = 4.5 >>> algo = ot.FejerAlgorithm([10]) >>> value, nodes = algo.integrateWithNodes(f, ot.Interval(a, b))
- setName(name)¶
Accessor to the object’s name.
- Parameters:
- namestr
The name of the object.