.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_data_analysis/estimate_dependency_and_copulas/plot_estimate_dependence_wind.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_data_analysis_estimate_dependency_and_copulas_plot_estimate_dependence_wind.py: Estimate tail dependence coefficients on the wind data ====================================================== .. GENERATED FROM PYTHON SOURCE LINES 6-12 In this example we estimate the tail dependence coefficient of a bivariate sample applied to the corresponding annual maximum wind speeds over the period 1944-1983 at two locations in the United States: Albany, New-York and Hartford, Connecticut. Readers should refer to [coles2001]_ to get more details. First, we load the wave_surge dataset. The speeds are expressed in knot : one knot is equalt to one nautical mile per hour, which means :math:`1.852\, km.h^{-1}`. .. GENERATED FROM PYTHON SOURCE LINES 12-31 .. code-block:: Python import openturns as ot import openturns.viewer as otv from openturns.usecases import coles data = coles.Coles().wind[:, 1:] print(data[:5]) graph = ot.Graph( "Annual maximum wind speeds at Albany (NY) and Hartford (CT)", "spped at Albany (knot)", "speed at Hartford (knot)", True, "", ) cloud = ot.Cloud(data) cloud.setColor("red") graph.add(cloud) view = otv.View(graph) .. image-sg:: /auto_data_analysis/estimate_dependency_and_copulas/images/sphx_glr_plot_estimate_dependence_wind_001.png :alt: Annual maximum wind speeds at Albany (NY) and Hartford (CT) :srcset: /auto_data_analysis/estimate_dependency_and_copulas/images/sphx_glr_plot_estimate_dependence_wind_001.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-script-out .. code-block:: none [ Hartford Albany ] 0 : [ 49 52 ] 1 : [ 54 46 ] 2 : [ 60 48 ] 3 : [ 49 44 ] 4 : [ 57 42 ] .. GENERATED FROM PYTHON SOURCE LINES 32-39 We plot the graph of the function :math:`u \mapsto \chi(u)` and the graph of the function :math:`u \mapsto \bar{\chi}(u)`. We conclude that both variables are asymptotially dependent as :math:`\chi > 0` and that they are positively correlated as :math:`\hat{\chi} > 0`. We cn visually deduce the upper tail dependence coefficient :math:`\chi \simeq 0.26` and the upper extremal dependence coefficient :math:`\bar{\chi} \simeq 0.5`. Note that the number of data points is so small that the curves seem chaotic. It is difficult, if not impossible, to deduce the value of :math:`\chi` and :math:`\bar{\chi}` from the curves. .. GENERATED FROM PYTHON SOURCE LINES 39-46 .. code-block:: Python graph1 = ot.VisualTest.DrawUpperTailDependenceFunction(data) graph2 = ot.VisualTest.DrawUpperExtremalDependenceFunction(data) grid = ot.GridLayout(1, 2) grid.setGraph(0, 0, graph1) grid.setGraph(0, 1, graph2) view = otv.View(grid) .. image-sg:: /auto_data_analysis/estimate_dependency_and_copulas/images/sphx_glr_plot_estimate_dependence_wind_002.png :alt: , Upper tail dependence function, Upper extremal dependence function :srcset: /auto_data_analysis/estimate_dependency_and_copulas/images/sphx_glr_plot_estimate_dependence_wind_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 47-48 .. code-block:: Python otv.View.ShowAll() .. _sphx_glr_download_auto_data_analysis_estimate_dependency_and_copulas_plot_estimate_dependence_wind.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_estimate_dependence_wind.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_estimate_dependence_wind.py `