.. _taylor_expansion_moments: Taylor expansion moments ------------------------ In this page, we consider the Taylor expansion of a function. One way to evaluate the central dispersion (expectation and variance) of the variable :math:`\uY=h(\uX)` is to use the Taylor expansion of the function :math:`h: \Rset^d \rightarrow \Rset^q` at the mean point :math:`\vect{\mu} = \Expect{\uX}`. Depending on the order of the Taylor expansion (classically first or second order), we get different approximations of the mean and variance of :math:`Y`. We use the notations introduced in :ref:`Taylor Expansion `. In the remainder, let :math:`\Cov \uX` be the covariance matrix of :math:`\uX`, defined by: .. math:: \Cov \uX = \mat{C} where :math:`\mat{C} \in \Rset^{n_X \times n_X}` is the input covariance matrix: .. math:: c_{ij} = \Expect{\left(X_i - \Expect{X_i}\right)\left(X_j - \Expect{X_j} \right)} with :math:`c_{ii} = \sigma_i^2`. Case 1: :math:`q=1`, :math:`Y = h(\vect{X}) \in \Rset` ------------------------------------------------------ The second-order Taylor expansion of :math:`h` at the point :math:`\ux = \vect{\mu}` is: .. math:: y = h(\vect{\mu}) + \sum_{i = 1}^d \left( \frac{\partial h}{\partial x_i }\right)(\vect{\mu})(x_i-\mu_i) + \frac{1}{2} \sum_{i,j = 1}^d \left(\frac{\partial^2 h}{\partial x_i \partial x_j}\right)(\vect{\mu}) (x_i-\mu_i)(x_j-\mu_j) + o\left(\|\vect{x}\|^2\right). The expectation and variance of the first-order expansion are: .. math:: \Expect{Y} \approx h(\vect{\mu})\\ \Var{Y} \approx \sum_{i=1}^{d} \sigma_i^2 \left(\left(\frac{\partial h}{\partial x_i} \right)(\vect{\mu}) \right)^2 The expectation of the second-order expansion is: .. math:: \Expect{Y} \approx h (\vect{\mu}) + \frac{1}{2} \sum_{i,j=1}^{d} c_{ij}\left(\frac{\partial^2 h} {\partial x_i \partial x_j}\right)(\vect{\mu}). The second-order approximation of the variance is not implemented because it requires both the knowledge of higher order derivatives of :math:`h` and the knowledge of moments of order strictly greater than 2 of the distribution of :math:`\uX`. Case 2: :math:`q>1`, :math:`Y =(Y_1, \dots, Y_q) \in \Rset^q` ------------------------------------------------------------- The second-order Taylor expansion of :math:`h = (h_1, \dots, h_q)` at the point :math:`\ux = \vect{\mu}` for each marginal function :math:`h_k` is: .. math:: y_k = h_k(\vect{\mu}) + \sum_{i = 1}^d \left( \frac{\partial h_k}{\partial x_i }\right)(\vect{\mu}) (x_i-\mu_i)+ \frac{1}{2} \sum_{i,j = 1}^d \left( \frac{\partial^2 h_k}{\partial x_i \partial x_j}\right)(\vect{\mu})(x_i-\mu_i)(x_j-\mu_j) + o(\|\vect{x}\|^2). where :math:`1\leq k \leq q`. The expectation and covariance matrix of the first-order expansion are: .. math:: \Expect{\uY} \approx h(\vect{\mu})\\ \Cov \uY \approx \left( \sum_{i,j=1}^{d} c_{ij} \left( \frac{\partial h_k}{\partial x_i } \right)(\vect{\mu})\left( \frac{\partial h_\ell}{\partial x_j }\right)(\vect{\mu})\right)_{k, \ell} The expectation of the second-order expansion is: .. math:: (\Expect{\uY})_k \approx \Expect{Y_k} \approx h_k(\vect{\mu}) + \frac{1}{2} \sum_{i,j=1}^{d} c_{ij}\left( \frac{\partial^2 h_k}{\partial x_i \partial x_j}\right)(\vect{\mu}) The second-order approximation of the variance is not implemented because it requires both the knowledge of higher order derivatives of :math:`h` and the knowledge of moments of order strictly greater than 2 of the probability density function. .. topic:: API: - See :class:`~openturns.TaylorExpansionMoments` .. topic:: Examples: - See :doc:`/auto_reliability_sensitivity/central_dispersion/plot_estimate_moments_taylor`