# FORM¶

The First Order Reliability Method is used under the following context: let be a probabilistic input vector with joint density probability , let be a deterministic vector, let be the limit state function of the model and let be an event whose probability is defined as:

(1)¶

The objective of FORM is to evaluate . The method proceeds in three steps:

**Step 1**: Map the probabilistic model in terms of thanks to an
isoprobabilistic transformation which is a diffeomorphism from
into , such that the distribution of the random vector
has
the following properties: and have the same
distribution for all rotations .
The usual Isoprobabilistic transformations are the Generalized
Nataf transformation and the Rosenblatt one.
The mapping of the limit state function is
.
Then, the event probability can be written as:

(2)¶

where is the density function of the distribution in the standard space: that distribution is spherical (invariant by rotation by definition). That property implies that is a function of only.

Furthermore, we suppose that outside the sphere tangent to the limit state surface in the standard space, is decreasing.

**Step 2**: Find the design point which is the point
verifying the event of maximum likelihood : the decreasing hypothesis of the standard
distribution outside the sphere tangent to the limit state surface in
the standard space implies that the design point is the point on the limit state boundary that is closest
to the origin of the standard space. Thus, is the result of a constrained
optimization problem.

**Step 3**: In the standard space, approximate the limit state surface by a linear surface at the design
point . Then, the probability
(2) where the limit state surface has been approximated by a linear surface (hyperplane)
can be obtained exactly, thanks to the rotation invariance of the standard distribution :

(3)¶

where is the Hasofer-Lind reliability index, defined as the distance of the design point to the origin of the standard space and the marginal cumulative density function along any direction of the spherical distribution in the standard space (refer to Generalized Nataf Transformation and Rosenblatt Transformation).

Let us recall here that in the Rosenblatt standard space, random vectors follow the standard normal distribution (with zero mean, unit variance and unit correlation matrix), which implies that where is the CDF of the normal distribution with zero mean and unit variance. In the Generalized Nataf standard space, random vectors follow a spherical distribution, with zero mean, unit variance, unit correlation matrix and whose type is the type of the copula of the physical random vector : in that case, is the 1D cumulative distribution function with zero mean, unit variance and with type .