SafeAndSlow¶

class
SafeAndSlow
(*args)¶ SafeAndSlow method.
 Available constructors:
SafeAndSlow(solver=ot.Brent())
SafeAndSlow(solver, maximumDistance, stepSize)
Parameters: solver :
Solver
Non linear solver used to research the intersection of the limit state function with the direction, on each segment of length stepSize, between the center of the space and maximumDistance (root research).
maximumDistance : positive float
Distance from the center of the standard space until which we research an intersection with the limit state function along each direction. By default, the maximum distance is equal to the value defined through the key RootStrategyImplementationDefaultMaximumDistance of the
ResourceMap
.stepSize : float
Length of each segment inside which the root research is performed. By default, the step size is equal to the value defined through the key RootStrategyImplementationDefaultStepSize of the
ResourceMap
.See also
Notes
The SafeAndSlow strategy is the following: for each direction, we go along the direction by step of length stepSize from the origin to the maximum distant point(at distance maximumDistance from the center of the standard space) and we check whether there is a sign changement on each segment so formed.
We go until the maximum distant point. Then, for all the segments where we detected the presence of a root, we research the root with the selected non linear solver. We evaluate the contribution to the failure probability of each segment.
If stepSize is small enough, this strategy garantees us to find all the roots in the direction and the contribution of this direction to the failure probability is precisely evaluated.
Methods
getClassName
()Accessor to the object’s name. getId
()Accessor to the object’s id. getMaximumDistance
()Get the maximum distance. getName
()Accessor to the object’s name. getOriginValue
()Get the origin value. getShadowedId
()Accessor to the object’s shadowed id. getSolver
()Get the solver. getStepSize
()Get the step size. getVisibility
()Accessor to the object’s visibility state. hasName
()Test if the object is named. hasVisibleName
()Test if the object has a distinguishable name. setMaximumDistance
(maximumDistance)Set the maximum distance. setName
(name)Accessor to the object’s name. setOriginValue
(originValue)Set the origin value. setShadowedId
(id)Accessor to the object’s shadowed id. setSolver
(solver)Set the solver. setStepSize
(stepSize)Set the step size. setVisibility
(visible)Accessor to the object’s visibility state. solve
(function, value)Give all the roots found applying the root strategy. 
__init__
(*args)¶

getClassName
()¶ Accessor to the object’s name.
Returns: class_name : str
The object class name (object.__class__.__name__).

getId
()¶ Accessor to the object’s id.
Returns: id : int
Internal unique identifier.

getMaximumDistance
()¶ Get the maximum distance.
Returns: maximumDistance : positive float
Distance from the center of the standard space until which we research an intersection with the limit state function along each direction. By default, the maximum distance is equal to the value defined through the key RootStrategyImplementationDefaultMaximumDistance of the
ResourceMap
.

getName
()¶ Accessor to the object’s name.
Returns: name : str
The name of the object.

getOriginValue
()¶ Get the origin value.
Returns: origin : float
Value of the limit state function at the center of the standard space.

getShadowedId
()¶ Accessor to the object’s shadowed id.
Returns: id : int
Internal unique identifier.

getSolver
()¶ Get the solver.
Returns: solver :
Solver
Non linear solver which will research the root in a segment.

getStepSize
()¶ Get the step size.
Returns: stepSize : float
Length of each segment inside which the root research is performed. By default, the step size is equal to the value defined through the key RootStrategyImplementationDefaultStepSize of the
ResourceMap
.

getVisibility
()¶ Accessor to the object’s visibility state.
Returns: visible : bool
Visibility flag.

hasName
()¶ Test if the object is named.
Returns: hasName : bool
True if the name is not empty.

hasVisibleName
()¶ Test if the object has a distinguishable name.
Returns: hasVisibleName : bool
True if the name is not empty and not the default one.

setMaximumDistance
(maximumDistance)¶ Set the maximum distance.
Parameters: maximumDistance : positive float
Distance from the center of the standard space until which we research an intersection with the limit state function along each direction. By default, the maximum distance is equal to the value defined through the key RootStrategyImplementationDefaultMaximumDistance of the
ResourceMap
.

setName
(name)¶ Accessor to the object’s name.
Parameters: name : str
The name of the object.

setOriginValue
(originValue)¶ Set the origin value.
Parameters: origin : float
Value of the limit state function at the center of the standard space.

setShadowedId
(id)¶ Accessor to the object’s shadowed id.
Parameters: id : int
Internal unique identifier.

setSolver
(solver)¶ Set the solver.
Parameters: solver :
Solver
Non linear solver which will research the root in a segment.

setStepSize
(stepSize)¶ Set the step size.
Parameters: stepSize : float
Length of each segment inside which the root research is performed. By default, the step size is equal to the value defined through the key RootStrategyImplementationDefaultStepSize of the
ResourceMap
.

setVisibility
(visible)¶ Accessor to the object’s visibility state.
Parameters: visible : bool
Visibility flag.

solve
(function, value)¶ Give all the roots found applying the root strategy.
Parameters: function :
NumericalMathFunction
Function from to along the ray, a linear function along the direction.
value : float
Returns: roots :
NumericalScalarCollection
All the roots found applying the root strategy.
 If
SafeAndSlow
: all the real values such as function(x) = value researched in each segment of length stepSize, within [origin, maximumDistance].  If
RiskyAndFast
: the real value such as function(x) = value researched within [origin, maximumDistance].  If
MediumSafe
: the real value such as function(x) = value researched the first segment of length stepSize, within [origin, maximumDistance] where a sign changement of function has been detected.
 If