Bibliography

[aas2004]Aas K., Modelling the dependence structure of financial assets: a survey of four copulas, Norwegian Computing Center report nr. SAMBA/22/04, December 2004. pdf
[abate1992]Abate, J. and Whitt, W. (1992). The Fourier-series method for inverting transforms of probability distributions. Queueing Systems 10, 5–88., 1992, formula 5.5. pdf
[amblard2012]Pierre-Olivier Amblard, Jean-François Coeurjolly, Frédéric Lavancier, Anne Philippe, Basic properties of the Multivariate Fractional Brownian Motion, pdf
[au2001]Au, S. K. Estimation of small failure probabilities in high dimensions by subset simulation. Prob. Eng. Mech., 2001, 16(4), 263-277. pdf
[bhattacharyya1997]Bhattacharyya G.K., and R.A. Johnson, Statistical Concepts and Methods, John Wiley and Sons, New York, 1997.
[blatman2009]Blatman, G. Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis., PhD thesis. Blaise Pascal University-Clermont II, France, 2009. pdf
[burnham2002]Burnham, K.P., and Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information Theoretic Approach, Springer, 2002.
[cambou2017]Mathieu Cambou, Marius Hofert, Christiane Lemieux, Quasi-Random numbers for copula models, Stat. Comp., 2017, 27(5), 1307-1329. pdf
[caniou2012]Caniou, Y. Global sensitivity analysis for nested and multiscale modelling. PhD thesis. Blaise Pascal University-Clermont II, France, 2012. pdf
[dagostino1986]D’Agostino, R.B. and Stephens, M.A. Goodness-of-Fit Techniques, Marcel Dekker, Inc., New York, 1986.
[damblin2013]G. Damblin, M. Couplet and B. Iooss. Numerical studies of space filling designs: optimization of Latin hypercube samples and subprojection properties. Journal of Simulation, 7:276-289, 2013. pdf
[devroye1986]Devroye L, Non-Uniform RandomVariate Generation, Springer-Verlag, New York, 1986 pdf
[dixon1983]Dixon, W.J., Massey, F.J, Introduction to statistical analysis 4th ed., McGraw-Hill, 1983
[doornik2005]Doornik, J.A. An Improved Ziggurat Method to Generate Normal Random Samples, mimeo, Nuffield College, University of Oxford, 2005. pdf
[dubourg2011]Dubourg, V. Adaptative surrogate models for reliability and reliability-based design optimization, University Blaise Pascal - Clermont II, 2011. pdf
[fang2006]K-T. Fang, R. Li, and A. Sudjianto. Design and modeling for computer experiments. Chapman & Hall CRC, 2006.
[gamboa2013]Gamboa, F., Janon, A., Klein, T. & Lagnoux, A. Sensitivity analysis for multidimensional and functional outputs. 2013 pdf
[hormann1992]Hormann W., The generation of Binomial Random Variates pdf
[halko2010]Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, pdf
[halko2011]Nathan Halko, Per-Gunnar Martisson, Yoel Shkolnisky and Mark Tygert, An algorithm for the principal component analysis of large data sets, pdf
[janon2014]Janon A., Klein T., Lagnoux-Renaudie A., Prieur C., Asymptotic normality and efficiency of two Sobol index estimators, ESAIM: Probability and Statistics, EDP Sciences, 2014, 18, pp.342-364. pdf
[jansen1999]Jansen, M.J.W. Analysis of variance designs for model output, Computer Physics Communication, 1999, 117, 35-43. pdf
[jin2005]R. Jin, W. Chen, and A. Sudjianto. An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 134 :268-287, 2005. pdf
[johnson1990]Johnson M, Moore L and Ylvisaker D (1990). Minimax and maximin distance design. Journal of Statistical Planning and Inference 26(2): 131-148.
[jones1998]Donald R. Jones, Matthias Schonlau and William J Welch. Global optimization of expensive black-box functions, Journal of Global Optimization, 13(4), 455-492, 1998. pdf
[knight1966]Knight, W. R. A Computer Method for Calculating Kendall’s Tau with Ungrouped Data. Journal of the American Statistical Association, 1966, 61(314, Part 1), 436-439. pdf
[koay2006]Koay C.G., Basser P.J., Analytically exact correction scheme for signal extraction from noisy magnitude MR signals, Journal of magnetics Resonance 179, 317-322, 2006.
[koehler1996]J.R. Koehler and A.B. Owen. Computer experiments. In S. Ghosh and C.R. Rao, editors, Design and analysis of experiments, volume 13 of Handbook of statistics. Elsevier, 1996.
[lebrun2009a]Lebrun, R. & Dutfoy, A. An innovating analysis of the Nataf transformation from the copula viewpoint. Prob. Eng. Mech., 2009, 24, 312-320. pdf
[lebrun2009b]Lebrun, R. & Dutfoy, A. A generalization of the Nataf transformation to distributions with elliptical copula. Prob. Eng. Mech., 2009, 24, 172-178. pdf
[lebrun2009c]Lebrun, R. & Dutfoy, A. Do Rosenblatt and Nataf isoprobabilistic transformations really differ? Prob. Eng. Mech., 2009, 24, 577-584. pdf
[lecuyer2005]L’Ecuyer P., Lemieux C. (2005) Recent Advances in Randomized Quasi-Monte Carlo Methods. In: Dror M., L’Ecuyer P., Szidarovszky F. (eds) Modeling Uncertainty. International Series in Operations Research & Management Science, vol 46. Springer, Boston, MA pdf
[marsaglia1993]Marsaglia G. and Tsang W. W., A Simple Method for Generating Gamma, Journal of Statistical Computational and Simulation, vol 46, pp101 - 110,1993.
[martinez2011]Martinez, J-M., Analyse de sensibilite globale par decomposition de la variance, Presentation in the meeting of GdR Ondes and GdR MASCOT-NUM, January, 13th, 2011, Institut Henri Poincare, Paris, France
[matthys2003]G. Matthys & J. Beirlant, Estimating the extreme value index and high quantiles with exponential regression models, Statistica Sinica, 13, 850-880, 2003. pdf
[mauricio1995]J. A. Mauricio, Exact Maximum Likelihood Estimation of Stationary Vector ARMA Models, Journal of the American Statistical Association 90, 282-291, 1995. pdf
[mckay1979]McKay M, Beckman R and Conover W (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21(2): 239-245. pdf
[minka2012]Thomas P. Minka, Estimating a Dirichlet distribution, Microsoft Research report, 2000 (revised 2003, 2009, 2012). pdf
[morris1995]D. Morris and J. Mitchell. Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 43 :381-402, 1995. pdf
[munoz2011]M. Munoz Zuniga, J. Garnier, E. Remy and E. de Rocquigny, Adaptative Directional Stratification for controlled estimation of the probability of a rare event, Reliability Engineering and System Safety, 2011. pdf
[nataf1962]Nataf, A. Determination des distributions dont les marges sont donnees. C. R. Acad. Sci. Paris, 1962, 225, 42-43. pdf
[nash1999]Stephen G. Nash, 1999, A survey of Truncated-Newton methods, Systems Engineering and Operations Research Dept., George Mason University, Fairfax, VA 22030. pdf
[nisthandbook]NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/
[nlopt2009]Steven G. Johnson, The NLopt nonlinear-optimization package, http://ab-initio.mit.edu/nlopt
[pmfre01116]Dumas A., Lois asymptotiques des estimateurs des indices de Sobol’, Technical report, Phimeca, 2018. pdf
[pronzato2012]Pronzato L and Muller W (2012). Design of computer experiments: Space filling and beyond. Statistics and Computing 22(3): 681-701. pdf
[rai2015]Rai, P. Sparse Low Rank Approximation of Multivariate Functions - Applications in Uncertainty Quantification., PhD thesis. Ecole Centrale de Nantes, France, 2015. pdf
[rosenblatt1952]Rosenblatt, M. Remarks on a multivariate transformation. Ann. Math. Stat., 1952, 23, 470-472. pdf
[saltelli1999]Saltelli, A., Tarantola, S. & Chan, K. A quantitative, model independent method for global sensitivity analysis of model output. Technometrics, 1999, 41(1), 39-56. pdf
[saltelli2002]Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communication, 2002, 145, 580-297. pdf
[saporta1990]Saporta, G. (1990). Probabilités, Analyse de données et Statistique, Technip
[simard2011]Simard, R. & L’Ecuyer, P. Computing the Two-Sided Kolmogorov- Smirnov Distribution. Journal of Statistical Software, 2011, 39(11), 1-18. pdf
[sobol1993]Sobol, I. M. Sensitivity analysis for non-linear mathematical model Math. Modelling Comput. Exp., 1993, 1, 407-414. pdf
[sobol2007]Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S.S. and Mauntz, W. Estimating the approximation errors when fixing unessential factors in global sensitivity analysis, Reliability Engineering and System Safety, 2007, 92, 957-960. pdf
[soizeghanem2004]Soize, C., Ghanem, R. Physical systems with random uncertainties: Chaos representations with arbitrary probability measure, SIAM Journal on Scientific Computing, Society for Industrial and Applied Mathematics, 2004, 26 (2), 395-410. pdf
[sprent2001]Sprent, P., and Smeeton, N.C. Applied Nonparametric Statistical Methods, Third edition, Chapman & Hall, 2001.
[stadlober1990]Stadlober E., The ratio of uniforms approach for generating discrete random variates. Journal of Computational and Applied Mathematics, vol. 31, no. 1, pp. 181-189, 1990. pdf
[stoer1993]Stoer, J., Bulirsch, R. Introduction to Numerical Analysis, Second Edition, Springer-Verlag, 1993. pdf
[Wand1994]Wand M.P, Jones M.C. Kernel Smoothing First Edition, Chapman & Hall, 1994.