FieldFunction

class FieldFunction(*args)

Field function.

Available constructors:

FieldFunction(meshDimension=1)

FieldFunction(function, meshDimension=1)

Parameters:

function : NumericalMathFunction

Function g: \Rset^d \mapsto \Rset^q used to define a ValueFunction object.

meshDimension : int, n \geq 0

Dimension of the mesh \cM.

Notes

Field functions are functions being able to act on fields. Two particular field functions are defined: the spatial function and the temporal function.

A field function f_{dyn}:\cD \times \Rset^d \mapsto \cD' \times \Rset^q where \cD \in \Rset^n and \cD' \in \Rset^p is defined by:

f_{dyn}(\vect{t}, \vect{x}) = (t'(\vect{t}), v'(\vect{t}, \vect{x}))

with t': \cD \mapsto \cD' and v': \cD \times \Rset^d \mapsto \Rset^q.

A field function f_{dyn} transforms a multivariate stochastic process:

X: \Omega \times \cD \mapsto \Rset^d

where \cD \in \Rset^n is discretized according to the mesh \cM into the multivariate stochastic process:

Y=f_{dyn}(X)

such that:

Y: \Omega \times \cD' \mapsto \Rset^q

where the mesh \cD' \in \Rset^p is discretized according to the \cM'.

A field function f_{dyn} also acts on fields and produces fields of possibly different dimension (q\neq d) and mesh (\cD \neq \cD' or \cM \neq \cM').

OpenTURNS only proposes field functions where \cD'=\cD and \cM'=\cM which means that t'=Id through the spatial function and the temporal function. It follows that the process Y shares the same mesh with X, only its values have changed.

Methods

__call__(*args)
getCallsNumber() Get the number of calls of a FieldFunction.
getClassName() Accessor to the object’s name.
getId() Accessor to the object’s id.
getImplementation(*args) Accessor to the underlying implementation.
getInputDescription() Get the description of the inputs.
getInputDimension() Get the dimension of the input.
getMarginal(*args) Get the marginal(s) at given indice(s).
getName() Accessor to the object’s name.
getOutputDescription() Get the description of the outputs.
getOutputDimension() Get the dimension of the output.
getOutputMesh(inputMesh) Get the mesh associated to the output process.
getSpatialDimension() Get the dimension of the mesh.
setName(name) Accessor to the object’s name.
__init__(*args)
getCallsNumber()

Get the number of calls of a FieldFunction.

Returns:

callsNumber : int

Counts the number of times the FieldFunction has been called since its creation.

getClassName()

Accessor to the object’s name.

Returns:

class_name : str

The object class name (object.__class__.__name__).

getId()

Accessor to the object’s id.

Returns:

id : int

Internal unique identifier.

getImplementation(*args)

Accessor to the underlying implementation.

Returns:

impl : Implementation

The implementation class.

getInputDescription()

Get the description of the inputs.

Returns:

inputDescription : Description

Describes the inputs of the function.

getInputDimension()

Get the dimension of the input.

Returns:

d : int

Input dimension d of the function.

getMarginal(*args)

Get the marginal(s) at given indice(s).

Parameters:

i : int or list of ints, 0 \leq i < d

Indice(s) of the marginal(s) needed. d is the dimension of the FieldFunction.

Returns:

fieldFunction : FieldFunction

FieldFunction restricted to the concerned marginal(s) at the indice(s) i of the field function f_{dyn}.

getName()

Accessor to the object’s name.

Returns:

name : str

The name of the object.

getOutputDescription()

Get the description of the outputs.

Returns:

outputDescription : Description

Describes the outputs of the function.

getOutputDimension()

Get the dimension of the output.

Returns:

q : int

Output dimension q of the function.

getOutputMesh(inputMesh)

Get the mesh associated to the output process.

Returns:

outputMesh : Mesh

The mesh of the output process.

getSpatialDimension()

Get the dimension of the mesh.

Returns:

spatialDimension : int, n \geq 0

Dimension of the mesh \cM.

setName(name)

Accessor to the object’s name.

Parameters:

name : str

The name of the object.