# MonomialFunction¶

class `MonomialFunction`(*args)

Monomial function class.

Available constructors:

MonomialFunction(degree)

Parameters
degreint

Degree of the monomial function

Notes

The monomial function defines as :

Examples

Create a standard absolute exponential covariance function:

```>>> import openturns as ot
>>> P = ot.MonomialFunction(3)
```

Methods

 `__call__`(self, x) Call self as a function. `draw`(self, xMin, xMax, pointNumber) Draw the function. `getClassName`(self) Accessor to the object’s name. `getId`(self) Accessor to the object’s id. `getName`(self) Accessor to the object’s name. `getShadowedId`(self) Accessor to the object’s shadowed id. `getVisibility`(self) Accessor to the object’s visibility state. `gradient`(self, x) Compute the gradient at point . `hasName`(self) Test if the object is named. `hasVisibleName`(self) Test if the object has a distinguishable name. `hessian`(self, x) Compute the hessian at point . `setName`(self, name) Accessor to the object’s name. `setShadowedId`(self, id) Accessor to the object’s shadowed id. `setVisibility`(self, visible) Accessor to the object’s visibility state.
`__init__`(self, \*args)

Initialize self. See help(type(self)) for accurate signature.

`draw`(self, xMin, xMax, pointNumber)

Draw the function.

Parameters
x_minfloat, optional

The starting value that is used for meshing the x-axis.

x_maxfloat, optional,

The ending value that is used for meshing the x-axis.

n_pointsint, optional

The number of points that is used for meshing the x-axis.

Examples

```>>> import openturns as ot
>>> from openturns.viewer import View
>>> f = ot.UniVariatePolynomial([1.0, 2.0, -3.0, 5.0])
>>> View(f.draw(-10.0, 10.0, 100)).show()
```
`getClassName`(self)

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

`getId`(self)

Accessor to the object’s id.

Returns
idint

Internal unique identifier.

`getName`(self)

Accessor to the object’s name.

Returns
namestr

The name of the object.

`getShadowedId`(self)

Accessor to the object’s shadowed id.

Returns
idint

Internal unique identifier.

`getVisibility`(self)

Accessor to the object’s visibility state.

Returns
visiblebool

Visibility flag.

`gradient`(self, x)

Compute the gradient at point .

Returns

The value of the monomial’s first-order derivative at point .

Examples

```>>> import openturns as ot
>>> P = ot.MonomialFunction(3)
3.0
```
`hasName`(self)

Test if the object is named.

Returns
hasNamebool

True if the name is not empty.

`hasVisibleName`(self)

Test if the object has a distinguishable name.

Returns
hasVisibleNamebool

True if the name is not empty and not the default one.

`hessian`(self, x)

Compute the hessian at point .

Parameters
xfloat

Input value.

Returns
hessianfloat

The value of the monomial’s second-order derivative at point .

Examples

```>>> import openturns as ot
>>> P = ot.MonomialFunction(3)
>>> print(P.hessian(1.0))
6.0
```
`setName`(self, name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

`setShadowedId`(self, id)

Accessor to the object’s shadowed id.

Parameters
idint

Internal unique identifier.

`setVisibility`(self, visible)

Accessor to the object’s visibility state.

Parameters
visiblebool

Visibility flag.