NormalityTest_CramerVonMisesNormal(sample, level=0.95)

Evaluate whether a sample follows a normal distribution.

Using the Cramer Von Mises Normal test.

Available usages:


NormalityTest.CramerVonMisesNormal(sample, level)


sample : 2-d sequence of float

Tested sample.

level : positive float

Threshold p-value of the test (= 1 - first type risk), it must be < 1, equal to 0.95 by default.


testResult : TestResult

Structure containing the result of the test.


The test is used to check whether the sample follows a normal distribution. The test concerns the deviation squared and integrated over the entire variation domain, it often appears to be more robust than the Kolmogorov-Smirnov test.


>>> import openturns as ot
>>> ot.RandomGenerator.SetSeed(0)
>>> distribution = ot.Normal()
>>> sample = distribution.getSample(30)
>>> test_result = ot.NormalityTest.CramerVonMisesNormal(sample)
>>> print(test_result)
class=TestResult name=Unnamed type=CramerVonMisesNormal binaryQualityMeasure=true p-value threshold=0.05 p-value=0.682524 description=[]