.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "auto_examples/plot_example1.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_examples_plot_example1.py: Example 1 ========= .. GENERATED FROM PYTHON SOURCE LINES 7-20 Problem statement: .. math:: \begin{aligned} & \underset{x}{\text{minimize}} & & \mathbb{E}_{\cD}((x_0-2)^2 + 2x_1^2 -4x_1 + \Theta) \\ & \text{subject to} & & \mathbb{P}_{\cD}(-x_0 + 4x_1 + \Theta -3 \leq 0) \geq 0.9 \\ & & & \Theta \thicksim \cU(1, 3) \end{aligned} Solution: :math:`\hat{x} = [2.2, 0.6]` .. GENERATED FROM PYTHON SOURCE LINES 23-59 .. code-block:: Python import openturns as ot import otrobopt # ot.Log.Show(ot.Log.Info) calJ = ot.SymbolicFunction( ['x0', 'x1', 'theta'], ['(x0-2)^2 + 2*x1^2 - 4*x1 + theta']) calG = ot.SymbolicFunction( ['x0', 'x1', 'theta'], ['-(-x0 + 4*x1 + theta - 3)']) J = ot.ParametricFunction(calJ, [2], [2.0]) g = ot.ParametricFunction(calG, [2], [2.0]) dim = J.getInputDimension() solver = ot.Cobyla() solver.setCheckStatus(False) solver.setMaximumIterationNumber(1000) thetaDist = ot.Uniform(1.0, 3.0) robustnessMeasure = otrobopt.MeanMeasure(J, thetaDist) reliabilityMeasure = otrobopt.JointChanceMeasure( g, thetaDist, ot.Greater(), 0.9) problem = otrobopt.RobustOptimizationProblem( robustnessMeasure, reliabilityMeasure) bounds = ot.Interval([-10.0] * dim, [10.0] * dim) problem.setBounds(bounds) algo = otrobopt.SequentialMonteCarloRobustAlgorithm(problem, solver) algo.setMaximumIterationNumber(10) algo.setMaximumAbsoluteError(1e-3) algo.setInitialSamplingSize(10) algo.setInitialSearch(100) algo.run() result = algo.getResult() print('x*=', result.getOptimalPoint(), 'J(x*)=', result.getOptimalValue(), 'iteration=', result.getIterationNumber()) .. rst-class:: sphx-glr-script-out .. code-block:: none x*= [2.1791,0.620063] J(x*)= [0.19849] iteration= 3 .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.324 seconds) .. _sphx_glr_download_auto_examples_plot_example1.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_example1.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_example1.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_example1.zip `