Note
Go to the end to download the full example code.
Example 4ΒΆ
Problem statement:
Solution:
import openturns as ot
import otrobopt
# ot.Log.Show(ot.Log.Info)
calJ = ot.SymbolicFunction(['x', 'theta'], ['cos(x) * sin(theta)'])
calG = ot.SymbolicFunction(['x', 'theta'], ['-(-2 - x + theta)', '-(x - 4)'])
J = ot.ParametricFunction(calJ, [1], [1.0])
g = ot.ParametricFunction(calG, [1], [1.0])
dim = J.getInputDimension()
solver = ot.Cobyla()
solver.setMaximumIterationNumber(1000)
solver.setStartingPoint([0.0] * dim)
thetaDist = ot.Uniform(0.0, 2.0)
robustnessMeasure = otrobopt.MeanMeasure(J, thetaDist)
reliabilityMeasure = otrobopt.JointChanceMeasure(
g, thetaDist, ot.Greater(), 0.9)
problem = otrobopt.RobustOptimizationProblem(
robustnessMeasure, reliabilityMeasure)
algo = otrobopt.SequentialMonteCarloRobustAlgorithm(problem, solver)
algo.setMaximumIterationNumber(10)
algo.setMaximumAbsoluteError(1e-3)
algo.setInitialSamplingSize(10)
algo.run()
result = algo.getResult()
print('x*=', result.getOptimalPoint(), 'J(x*)=',
result.getOptimalValue(), 'iteration=', result.getIterationNumber())
x*= [3.14159] J(x*)= [-0.757706] iteration= 2
Total running time of the script: (0 minutes 0.007 seconds)