Estimate an integralΒΆ
In this example we are going to evaluate an integral of the form.
with the iterated quadrature algorithm.
[2]:
from __future__ import print_function
import openturns as ot
import math as m
[3]:
# define the integrand and the bounds
a = -m.pi
b = m.pi
f = ot.SymbolicFunction(['x', 'y'], ['1+cos(x)*sin(y)'])
l = [ot.SymbolicFunction(['x'], [' 2+cos(x)'])]
u = [ot.SymbolicFunction(['x'], ['-2-cos(x)'])]
[5]:
# Draw the graph of the integrand and the bounds
g = ot.Graph('Integration nodes', 'x', 'y', True, 'topright')
g.add(f.draw([a,a],[b,b]))
curve = l[0].draw(a, b).getDrawable(0)
curve.setLineWidth(2)
curve.setColor('red')
g.add(curve)
curve = u[0].draw(a, b).getDrawable(0)
curve.setLineWidth(2)
curve.setColor('red')
g.add(curve)
g
[5]:
[6]:
# compute the integral value
I2 = ot.IteratedQuadrature().integrate(f, a, b, l, u)
print(I2)
[-25.1327]