Creation of a custom random vectorΒΆ
In this example we are going to create a distribution or copula.
The way to go is inheriting the PythonRandomVector class and overload its methods:
getRealization
getSample
getMean
getCovariance
[1]:
from __future__ import print_function
import openturns as ot
import math as m
[2]:
# Inherit PythonRandomVector
class RVEC(ot.PythonRandomVector):
def __init__(self):
super(RVEC, self).__init__(2)
self.setDescription(['R', 'S'])
def getRealization(self):
X = [ot.RandomGenerator.Generate(), 2.0 + ot.RandomGenerator.Generate()]
return X
def getSample(self, size):
X = []
for i in range(size):
X.append(
[ot.RandomGenerator.Generate(), 2.0 + ot.RandomGenerator.Generate()])
return X
def getMean(self):
return [0.5, 2.5]
def getCovariance(self):
return [[1.0, 0.0], [0.0, 1.0]]
[3]:
# Instanciate our distribution
randomVector = ot.RandomVector(RVEC())
[4]:
# Get a sample
randomVector.getSample(5)
[4]:
v0 | v1 | |
---|---|---|
0 | 0.6298765566077771 | 2.8828052237192603 |
1 | 0.13527635081884104 | 2.032502751204385 |
2 | 0.3470570412135219 | 2.9694230211349892 |
3 | 0.9206795933570506 | 2.5030401514493823 |
4 | 0.06320607651305044 | 2.2927568937477316 |
[5]:
# Get mean
randomVector.getMean()
[5]:
[0.5,2.5]
[6]:
# Compute the probability contained in an interval
randomVector.getCovariance()
[6]:
[[ 1 0 ]
[ 0 1 ]]