Random vector manipulationΒΆ
The RandomVector object represents the concept of random variable.
In this example we are going to exhibit some of its main methods.
[2]:
from __future__ import print_function
import openturns as ot
import math as m
[7]:
# Create a random vector
dist3d = ot.Normal(3)
X = ot.RandomVector(dist3d)
[13]:
# Get the dimension
X.getDimension()
[13]:
3
[8]:
# Get the mean
X.getMean()
[8]:
[0,0,0]
[10]:
# Get the covariance
X.getCovariance()
[10]:
[[ 1 0 0 ]
[ 0 1 0 ]
[ 0 0 1 ]]
[11]:
# Draw a sample
X.getSample(5)
[11]:
| X0 | X1 | X2 | |
|---|---|---|---|
| 0 | 0.3500420865302907 | -0.3550070491856397 | 1.437249310140903 |
| 1 | 0.8106679824694837 | 0.79315601145977 | -0.4705255986325704 |
| 2 | 0.26101793529769673 | -2.2900619818700854 | -1.2828852904549808 |
| 3 | -1.311781115463341 | -0.09078382658049489 | 0.9957932259165571 |
| 4 | -0.13945281896393122 | -0.5602056000378475 | 0.4454896972990519 |
[5]:
# Extract a single component
X1 = X.getMarginal(1)
X1.getSample(5)
[5]:
| X1 | |
|---|---|
| 0 | 0.6082016512187646 |
| 1 | -1.2661731022166567 |
| 2 | -0.43826561996041397 |
| 3 | 1.2054782008285756 |
| 4 | -2.1813852346165143 |
[12]:
# Extract several components
X02 = X.getMarginal([0, 2])
X02.getSample(5)
[12]:
| X0 | X2 | |
|---|---|---|
| 0 | 0.32292503034661274 | 0.44578529818450985 |
| 1 | -1.0380765948630941 | -0.8567122780208447 |
| 2 | 0.4736169171884015 | -0.12549774541256004 |
| 3 | 0.35141776801611424 | 1.7823586399387168 |
| 4 | 0.070207359297043 | -0.7813664602347197 |
OpenTURNS