InverseBoxCoxTransform¶
(Source code, png, hires.png, pdf)
 
- 
class InverseBoxCoxTransform(*args)¶
- BoxCox transformation. - Available constructors:
- InverseBoxCoxTransform(lambdaVect, shiftVect = 0) - InverseBoxCoxTransform(lambda, shift=0) 
 - Parameters
 - Notes - The inverse Box Cox transformation - writes for each component - : - The Box Cox transformation writes: - for all - . - Examples - Create an inverse Box Cox tranformation: - >>> import openturns as ot >>> myLambda = 0.1 >>> myInverseBoxCox = ot.InverseBoxCoxTransform(myLambda) - Methods - __call__(self, \*args)- Call self as a function. - draw(self, \*args)- Draw the output of function as a - Graph.- getCallsNumber(self)- Accessor to the number of times the function has been called. - getClassName(self)- Accessor to the object’s name. - getDescription(self)- Accessor to the description of the inputs and outputs. - getEvaluation(self)- Accessor to the evaluation function. - getEvaluationCallsNumber(self)- Accessor to the number of times the function has been called. - getGradient(self)- Accessor to the gradient function. - getGradientCallsNumber(self)- Accessor to the number of times the gradient of the function has been called. - getHessian(self)- Accessor to the hessian function. - getHessianCallsNumber(self)- Accessor to the number of times the hessian of the function has been called. - getId(self)- Accessor to the object’s id. - getImplementation(self)- Accessor to the underlying implementation. - getInputDescription(self)- Accessor to the description of the input vector. - getInputDimension(self)- Accessor to the dimension of the input vector. - getInverse(self)- Accessor to the Box Cox transformation. - getLambda(self)- Accessor to the - parameter. - getMarginal(self, \*args)- Accessor to marginal. - getName(self)- Accessor to the object’s name. - getOutputDescription(self)- Accessor to the description of the output vector. - getOutputDimension(self)- Accessor to the number of the outputs. - getParameter(self)- Accessor to the parameter values. - getParameterDescription(self)- Accessor to the parameter description. - getParameterDimension(self)- Accessor to the dimension of the parameter. - getShift(self)- Accessor to the - parameter. - gradient(self, inP)- Return the Jacobian transposed matrix of the function at a point. - hessian(self, inP)- Return the hessian of the function at a point. - isLinear(self)- Accessor to the linearity of the function. - isLinearlyDependent(self, index)- Accessor to the linearity of the function with regard to a specific variable. - parameterGradient(self, inP)- Accessor to the gradient against the parameter. - setDescription(self, description)- Accessor to the description of the inputs and outputs. - setEvaluation(self, evaluation)- Accessor to the evaluation function. - setGradient(self, gradient)- Accessor to the gradient function. - setHessian(self, hessian)- Accessor to the hessian function. - setInputDescription(self, inputDescription)- Accessor to the description of the input vector. - setName(self, name)- Accessor to the object’s name. - setOutputDescription(self, inputDescription)- Accessor to the description of the output vector. - setParameter(self, parameter)- Accessor to the parameter values. - setParameterDescription(self, description)- Accessor to the parameter description. - 
__init__(self, \*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
draw(self, \*args)¶
- Draw the output of function as a - Graph.- Available usages:
- draw(inputMarg, outputMarg, CP, xiMin, xiMax, ptNb) - draw(firstInputMarg, secondInputMarg, outputMarg, CP, xiMin_xjMin, xiMax_xjMax, ptNbs) - draw(xiMin, xiMax, ptNb) - draw(xiMin_xjMin, xiMax_xjMax, ptNbs) 
 - Parameters
- outputMarg, inputMargint, 
- outputMarg is the index of the marginal to draw as a function of the marginal with index inputMarg. 
- firstInputMarg, secondInputMargint, 
- In the 2D case, the marginal outputMarg is drawn as a function of the two marginals with indexes firstInputMarg and secondInputMarg. 
- CPsequence of float
- Central point. 
- xiMin, xiMaxfloat
- Define the interval where the curve is plotted. 
- xiMin_xjMin, xiMax_xjMaxsequence of float of dimension 2.
- In the 2D case, define the intervals where the curves are plotted. 
- ptNbint or list of ints of dimension 2 
- The number of points to draw the curves. 
 
- outputMarg, inputMargint, 
 - Notes - We note - where - and - , with - and - . - In the first usage: 
 - Draws graph of the given 1D outputMarg marginal - as a function of the given 1D inputMarg marginal with respect to the variation of - in the interval - , when all the other components of - are fixed to the corresponding ones of the central point CP. Then OpenTURNS draws the graph: - . - In the second usage: 
 - Draws the iso-curves of the given outputMarg marginal - as a function of the given 2D firstInputMarg and secondInputMarg marginals with respect to the variation of - in the interval - , when all the other components of - are fixed to the corresponding ones of the central point CP. Then OpenTURNS draws the graph: - . - In the third usage: 
 - The same as the first usage but only for function - . - In the fourth usage: 
 - The same as the second usage but only for function - . - Examples - >>> import openturns as ot >>> from openturns.viewer import View >>> f = ot.SymbolicFunction('x', 'sin(2*pi_*x)*exp(-x^2/2)') >>> graph = f.draw(-1.2, 1.2, 100) >>> View(graph).show() 
 - 
getCallsNumber(self)¶
- Accessor to the number of times the function has been called. - Returns
- calls_numberint
- Integer that counts the number of times the function has been called since its creation. 
 
 
 - 
getClassName(self)¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - 
getDescription(self)¶
- Accessor to the description of the inputs and outputs. - Returns
- descriptionDescription
- Description of the inputs and the outputs. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0] 
 - 
getEvaluation(self)¶
- Accessor to the evaluation function. - Returns
- functionEvaluationImplementation
- The evaluation function. 
 
- function
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getEvaluation()) [x1,x2]->[2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6] 
 - 
getEvaluationCallsNumber(self)¶
- Accessor to the number of times the function has been called. - Returns
- evaluation_calls_numberint
- Integer that counts the number of times the function has been called since its creation. 
 
 
 - 
getGradient(self)¶
- Accessor to the gradient function. - Returns
- gradientGradientImplementation
- The gradient function. 
 
- gradient
 
 - 
getGradientCallsNumber(self)¶
- Accessor to the number of times the gradient of the function has been called. - Returns
- gradient_calls_numberint
- Integer that counts the number of times the gradient of the Function has been called since its creation. Note that if the gradient is implemented by a finite difference method, the gradient calls number is equal to 0 and the different calls are counted in the evaluation calls number. 
 
 
 - 
getHessian(self)¶
- Accessor to the hessian function. - Returns
- hessianHessianImplementation
- The hessian function. 
 
- hessian
 
 - 
getHessianCallsNumber(self)¶
- Accessor to the number of times the hessian of the function has been called. - Returns
- hessian_calls_numberint
- Integer that counts the number of times the hessian of the Function has been called since its creation. Note that if the hessian is implemented by a finite difference method, the hessian calls number is equal to 0 and the different calls are counted in the evaluation calls number. 
 
 
 - 
getId(self)¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getImplementation(self)¶
- Accessor to the underlying implementation. - Returns
- implImplementation
- The implementation class. 
 
 
 - 
getInputDescription(self)¶
- Accessor to the description of the input vector. - Returns
- descriptionDescription
- Description of the input vector. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDescription()) [x1,x2] 
 - 
getInputDimension(self)¶
- Accessor to the dimension of the input vector. - Returns
- inputDimint
- Dimension of the input vector - . 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDimension()) 2 
 - 
getInverse(self)¶
- Accessor to the Box Cox transformation. - Returns
- myInverseBoxCoxBoxCoxTransform
- The Box Cox transformation. 
 
- myInverseBoxCox
 
 - 
getMarginal(self, \*args)¶
- Accessor to marginal. - Parameters
- indicesint or list of ints
- Set of indices for which the marginal is extracted. 
 
- Returns
- marginalFunction
- Function corresponding to either - or - , with - and - . 
 
- marginal
 
 - 
getName(self)¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - 
getOutputDescription(self)¶
- Accessor to the description of the output vector. - Returns
- descriptionDescription
- Description of the output vector. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDescription()) [y0] 
 - 
getOutputDimension(self)¶
- Accessor to the number of the outputs. - Returns
- number_outputsint
- Dimension of the output vector - . 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDimension()) 1 
 - 
getParameterDescription(self)¶
- Accessor to the parameter description. - Returns
- parameterDescription
- The parameter description. 
 
- parameter
 
 - 
getParameterDimension(self)¶
- Accessor to the dimension of the parameter. - Returns
- parameterDimensionint
- Dimension of the parameter. 
 
 
 - 
gradient(self, inP)¶
- Return the Jacobian transposed matrix of the function at a point. - Parameters
- pointsequence of float
- Point where the Jacobian transposed matrix is calculated. 
 
- Returns
- gradientMatrix
- The Jacobian transposed matrix of the function at point. 
 
- gradient
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6','x1 + x2']) >>> print(f.gradient([3.14, 4])) [[ 13.5345 1 ] [ 4.00001 1 ]] 
 - 
hessian(self, inP)¶
- Return the hessian of the function at a point. - Parameters
- pointsequence of float
- Point where the hessian of the function is calculated. 
 
- Returns
- hessianSymmetricTensor
- Hessian of the function at point. 
 
- hessian
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6','x1 + x2']) >>> print(f.hessian([3.14, 4])) sheet #0 [[ 20 -0.00637061 ] [ -0.00637061 0 ]] sheet #1 [[ 0 0 ] [ 0 0 ]] 
 - 
isLinear(self)¶
- Accessor to the linearity of the function. - Returns
- linearbool
- True if the function is linear, False otherwise. 
 
 
 - 
isLinearlyDependent(self, index)¶
- Accessor to the linearity of the function with regard to a specific variable. - Parameters
- indexint
- The index of the variable with regard to which linearity is evaluated. 
 
- Returns
- linearbool
- True if the function is linearly dependent on the specified variable, False otherwise. 
 
 
 - 
parameterGradient(self, inP)¶
- Accessor to the gradient against the parameter. - Returns
- gradientMatrix
- The gradient. 
 
- gradient
 
 - 
setDescription(self, description)¶
- Accessor to the description of the inputs and outputs. - Parameters
- descriptionsequence of str
- Description of the inputs and the outputs. 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0] >>> f.setDescription(['a','b','y']) >>> print(f.getDescription()) [a,b,y] 
 - 
setEvaluation(self, evaluation)¶
- Accessor to the evaluation function. - Parameters
- functionEvaluationImplementation
- The evaluation function. 
 
- function
 
 - 
setGradient(self, gradient)¶
- Accessor to the gradient function. - Parameters
- gradient_functionGradientImplementation
- The gradient function. 
 
- gradient_function
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> f.setGradient(ot.CenteredFiniteDifferenceGradient( ... ot.ResourceMap.GetAsScalar('CenteredFiniteDifferenceGradient-DefaultEpsilon'), ... f.getEvaluation())) 
 - 
setHessian(self, hessian)¶
- Accessor to the hessian function. - Parameters
- hessian_functionHessianImplementation
- The hessian function. 
 
- hessian_function
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> f.setHessian(ot.CenteredFiniteDifferenceHessian( ... ot.ResourceMap.GetAsScalar('CenteredFiniteDifferenceHessian-DefaultEpsilon'), ... f.getEvaluation())) 
 - 
setInputDescription(self, inputDescription)¶
- Accessor to the description of the input vector. - Parameters
- descriptionDescription
- Description of the input vector. 
 
- description
 
 - 
setName(self, name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - 
setOutputDescription(self, inputDescription)¶
- Accessor to the description of the output vector. - Parameters
- descriptionDescription
- Description of the output vector. 
 
- description
 
 - 
setParameter(self, parameter)¶
- Accessor to the parameter values. - Parameters
- parametersequence of float
- The parameter values. 
 
 
 - 
setParameterDescription(self, description)¶
- Accessor to the parameter description. - Parameters
- parameterDescription
- The parameter description. 
 
- parameter
 
 
 OpenTURNS
      OpenTURNS