NoEvaluation¶
- 
class NoEvaluation(*args)¶
- Proxy of C++ OT::NoEvaluation. - Methods - __call__(self, inP)- Call self as a function. - draw(self, \*args)- Draw the output of function as a - Graph.- getCallsNumber(self)- Accessor to the number of times the function has been called. - getClassName(self)- Accessor to the object’s name. - getDescription(self)- Accessor to the description of the inputs and outputs. - getId(self)- Accessor to the object’s id. - getInputDescription(self)- Accessor to the description of the inputs. - getInputDimension(self)- Accessor to the number of the inputs. - getMarginal(self, \*args)- Accessor to marginal. - getName(self)- Accessor to the object’s name. - getOutputDescription(self)- Accessor to the description of the outputs. - getOutputDimension(self)- Accessor to the number of the outputs. - getParameter(self)- Accessor to the parameter values. - getParameterDescription(self)- Accessor to the parameter description. - getParameterDimension(self)- Accessor to the dimension of the parameter. - getShadowedId(self)- Accessor to the object’s shadowed id. - getVisibility(self)- Accessor to the object’s visibility state. - hasName(self)- Test if the object is named. - hasVisibleName(self)- Test if the object has a distinguishable name. - isActualImplementation(self)- Accessor to the validity flag. - isLinear(self)- Accessor to the linearity of the evaluation. - isLinearlyDependent(self, index)- Accessor to the linearity of the evaluation with regard to a specific variable. - parameterGradient(self, inP)- Gradient against the parameters. - setDescription(self, description)- Accessor to the description of the inputs and outputs. - setInputDescription(self, inputDescription)- Accessor to the description of the inputs. - setName(self, name)- Accessor to the object’s name. - setOutputDescription(self, outputDescription)- Accessor to the description of the outputs. - setParameter(self, parameters)- Accessor to the parameter values. - setParameterDescription(self, description)- Accessor to the parameter description. - setShadowedId(self, id)- Accessor to the object’s shadowed id. - setVisibility(self, visible)- Accessor to the object’s visibility state. - 
__init__(self, \*args)¶
- Initialize self. See help(type(self)) for accurate signature. 
 - 
draw(self, \*args)¶
- Draw the output of function as a - Graph.- Available usages:
- draw(inputMarg, outputMarg, CP, xiMin, xiMax, ptNb) - draw(firstInputMarg, secondInputMarg, outputMarg, CP, xiMin_xjMin, xiMax_xjMax, ptNbs) - draw(xiMin, xiMax, ptNb) - draw(xiMin_xjMin, xiMax_xjMax, ptNbs) 
 - Parameters
- outputMarg, inputMargint, 
- outputMarg is the index of the marginal to draw as a function of the marginal with index inputMarg. 
- firstInputMarg, secondInputMargint, 
- In the 2D case, the marginal outputMarg is drawn as a function of the two marginals with indexes firstInputMarg and secondInputMarg. 
- CPsequence of float
- Central point. 
- xiMin, xiMaxfloat
- Define the interval where the curve is plotted. 
- xiMin_xjMin, xiMax_xjMaxsequence of float of dimension 2.
- In the 2D case, define the intervals where the curves are plotted. 
- ptNbint or list of ints of dimension 2 
- The number of points to draw the curves. 
 
- outputMarg, inputMargint, 
 - Notes - We note - where - and - , with - and - . - In the first usage: 
 - Draws graph of the given 1D outputMarg marginal - as a function of the given 1D inputMarg marginal with respect to the variation of - in the interval - , when all the other components of - are fixed to the corresponding ones of the central point CP. Then it draws the graph: - . - In the second usage: 
 - Draws the iso-curves of the given outputMarg marginal - as a function of the given 2D firstInputMarg and secondInputMarg marginals with respect to the variation of - in the interval - , when all the other components of - are fixed to the corresponding ones of the central point CP. Then it draws the graph: - . - In the third usage: 
 - The same as the first usage but only for function - . - In the fourth usage: 
 - The same as the second usage but only for function - . - Examples - >>> import openturns as ot >>> from openturns.viewer import View >>> f = ot.SymbolicFunction(['x'], ['sin(2*pi_*x)*exp(-x^2/2)']) >>> graph = f.draw(-1.2, 1.2, 100) >>> View(graph).show() 
 - 
getCallsNumber(self)¶
- Accessor to the number of times the function has been called. - Returns
- calls_numberint
- Integer that counts the number of times the function has been called since its creation. 
 
 
 - 
getClassName(self)¶
- Accessor to the object’s name. - Returns
- class_namestr
- The object class name (object.__class__.__name__). 
 
 
 - 
getDescription(self)¶
- Accessor to the description of the inputs and outputs. - Returns
- descriptionDescription
- Description of the inputs and the outputs. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0] 
 - 
getId(self)¶
- Accessor to the object’s id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getInputDescription(self)¶
- Accessor to the description of the inputs. - Returns
- descriptionDescription
- Description of the inputs. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDescription()) [x1,x2] 
 - 
getInputDimension(self)¶
- Accessor to the number of the inputs. - Returns
- number_inputsint
- Number of inputs. 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getInputDimension()) 2 
 - 
getMarginal(self, \*args)¶
- Accessor to marginal. - Parameters
- indicesint or list of ints
- Set of indices for which the marginal is extracted. 
 
- Returns
- marginalFunction
- Function corresponding to either - or - , with - and - . 
 
- marginal
 
 - 
getName(self)¶
- Accessor to the object’s name. - Returns
- namestr
- The name of the object. 
 
 
 - 
getOutputDescription(self)¶
- Accessor to the description of the outputs. - Returns
- descriptionDescription
- Description of the outputs. 
 
- description
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDescription()) [y0] 
 - 
getOutputDimension(self)¶
- Accessor to the number of the outputs. - Returns
- number_outputsint
- Number of outputs. 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getOutputDimension()) 1 
 - 
getParameterDescription(self)¶
- Accessor to the parameter description. - Returns
- parameterDescription
- The parameter description. 
 
- parameter
 
 - 
getParameterDimension(self)¶
- Accessor to the dimension of the parameter. - Returns
- parameter_dimensionint
- Dimension of the parameter. 
 
 
 - 
getShadowedId(self)¶
- Accessor to the object’s shadowed id. - Returns
- idint
- Internal unique identifier. 
 
 
 - 
getVisibility(self)¶
- Accessor to the object’s visibility state. - Returns
- visiblebool
- Visibility flag. 
 
 
 - 
hasName(self)¶
- Test if the object is named. - Returns
- hasNamebool
- True if the name is not empty. 
 
 
 - 
hasVisibleName(self)¶
- Test if the object has a distinguishable name. - Returns
- hasVisibleNamebool
- True if the name is not empty and not the default one. 
 
 
 - 
isActualImplementation(self)¶
- Accessor to the validity flag. - Returns
- is_implbool
- Whether the implementation is valid. 
 
 
 - 
isLinear(self)¶
- Accessor to the linearity of the evaluation. - Returns
- linearbool
- True if the evaluation is linear, False otherwise. 
 
 
 - 
isLinearlyDependent(self, index)¶
- Accessor to the linearity of the evaluation with regard to a specific variable. - Parameters
- indexint
- The index of the variable with regard to which linearity is evaluated. 
 
- Returns
- linearbool
- True if the evaluation is linearly dependent on the specified variable, False otherwise. 
 
 
 - 
parameterGradient(self, inP)¶
- Gradient against the parameters. - Parameters
- xsequence of float
- Input point 
 
- Returns
- parameter_gradientMatrix
- The parameters gradient computed at x. 
 
- parameter_gradient
 
 - 
setDescription(self, description)¶
- Accessor to the description of the inputs and outputs. - Parameters
- descriptionsequence of str
- Description of the inputs and the outputs. 
 
 - Examples - >>> import openturns as ot >>> f = ot.SymbolicFunction(['x1', 'x2'], ... ['2 * x1^2 + x1 + 8 * x2 + 4 * cos(x1) * x2 + 6']) >>> print(f.getDescription()) [x1,x2,y0] >>> f.setDescription(['a','b','y']) >>> print(f.getDescription()) [a,b,y] 
 - 
setInputDescription(self, inputDescription)¶
- Accessor to the description of the inputs. - Returns
- descriptionDescription
- Description of the inputs. 
 
- description
 
 - 
setName(self, name)¶
- Accessor to the object’s name. - Parameters
- namestr
- The name of the object. 
 
 
 - 
setOutputDescription(self, outputDescription)¶
- Accessor to the description of the outputs. - Returns
- descriptionDescription
- Description of the outputs. 
 
- description
 
 - 
setParameter(self, parameters)¶
- Accessor to the parameter values. - Parameters
- parametersequence of float
- The parameter values. 
 
 
 - 
setParameterDescription(self, description)¶
- Accessor to the parameter description. - Parameters
- parameterDescription
- The parameter description. 
 
- parameter
 
 - 
setShadowedId(self, id)¶
- Accessor to the object’s shadowed id. - Parameters
- idint
- Internal unique identifier. 
 
 
 - 
setVisibility(self, visible)¶
- Accessor to the object’s visibility state. - Parameters
- visiblebool
- Visibility flag. 
 
 
 
- 
 OpenTURNS
      OpenTURNS