PointToFieldFunction

class PointToFieldFunction(*args)

Function mapping a point into a field.

Parameters
inputDimint, \geq 1

Dimension d of the input vector

outputMeshMesh

The output mesh

outputDimint, \geq 1

Dimension d' of the output field

Notes

Point to field functions act on points to produce fields:

f: \left| \begin{array}{rcl}
           \Rset^{d} &  \rightarrow & \cM_{N'} \times (\Rset^{d'})^{N'}  \\
            \vect{v} & \mapsto  & F' 
          \end{array} \right.

with \cM_{N'} a mesh of \cD' \subset \Rset^{n'}.

A field is represented by a collection (\vect{t}'_i, \vect{v}'_i)_{1 \leq i \leq N'} of elements of \cM_{N'} \times (\Rset^{d'})^{N'} where \vect{t}'_i is a vertex of \cM_{N'} and \vect{v}'_i the associated value in \Rset^{d'}.

The two first constructors build an object which evaluation operator is not defined (it throws a NotYetImplementedException). The instanciation of such an object is used to extract an actual PointToFieldFunction from a Study.

Examples

>>> import openturns as ot

Use the class OpenTURNSPythonPointToFieldFunction to create a function that acts a vector \vect{v} of dimension d=2 and returns a field defined by:

  • the mesh that discretizes [0, 1] into 10 regular intervalls of length 0.1 (n=1)

  • the value associated to the vertex number i is \vect{v}'_i = i*\vect{v} (d'=2)

Using the class OpenTURNSPythonFieldToPointFunction allows to define a persistent state between the evaluations of the function.

>>> class FUNC(ot.OpenTURNSPythonPointToFieldFunction):
...     def __init__(self):
...         mesh = ot.RegularGrid(0.0, 0.1, 11)
...         super(FUNC, self).__init__(2, mesh, 2)
...         self.setInputDescription(['R', 'S'])
...         self.setOutputDescription(['T', 'U'])
...     def _exec(self, X):
...         size = self.getOutputMesh().getVerticesNumber()
...         Y = [ot.Point(X)*i for i in range(size)]
...         return Y
>>> F = FUNC()

Create the associated PointToFieldFunction:

>>> myFunc = ot.PointToFieldFunction(F)

It is also possible to create a PointToFieldFunction from a python function as follows:

>>> mesh = ot.RegularGrid(0.0, 0.1, 11)
>>> def myPyFunc(X):
...     size = 11
...     Y = [ot.Point(X)*i for i in range(size)]
...     return Y
>>> inputDim = 2
>>> outputDim = 2
>>> myFunc = ot.PythonPointToFieldFunction(inputDim, mesh, outputDim, myPyFunc)

Evaluation the function on a vector:

>>> Yfield = myFunc([1.1, 2.2])

Methods

__call__(self, \*args)

Call self as a function.

getCallsNumber(self)

Get the number of calls of the function.

getClassName(self)

Accessor to the object’s name.

getId(self)

Accessor to the object’s id.

getImplementation(self)

Accessor to the underlying implementation.

getInputDescription(self)

Get the description of the input vector.

getInputDimension(self)

Get the dimension of the input vector.

getMarginal(self, \*args)

Get the marginal(s) at given indice(s).

getName(self)

Accessor to the object’s name.

getOutputDescription(self)

Get the description of the output field values.

getOutputDimension(self)

Get the dimension of the output field values.

getOutputMesh(self)

Get the output mesh.

setInputDescription(self, inputDescription)

Set the description of the input vector.

setName(self, name)

Accessor to the object’s name.

setOutputDescription(self, outputDescription)

Set the description of the output field values.

__init__(self, \*args)

Initialize self. See help(type(self)) for accurate signature.

getCallsNumber(self)

Get the number of calls of the function.

Returns
callsNumberint

Counts the number of times the function has been called since its creation.

getClassName(self)

Accessor to the object’s name.

Returns
class_namestr

The object class name (object.__class__.__name__).

getId(self)

Accessor to the object’s id.

Returns
idint

Internal unique identifier.

getImplementation(self)

Accessor to the underlying implementation.

Returns
implImplementation

The implementation class.

getInputDescription(self)

Get the description of the input vector.

Returns
inputDescriptionDescription

Description of the input vector.

getInputDimension(self)

Get the dimension of the input vector.

Returns
dint

Dimension d of the input vector.

getMarginal(self, \*args)

Get the marginal(s) at given indice(s).

Parameters
iint or list of ints, 0 \leq i < d

Indice(s) of the marginal(s) to be extracted.

Returns
functionPointToFieldFunction

The initial function restricted to the concerned marginal(s) at the indice(s) i.

getName(self)

Accessor to the object’s name.

Returns
namestr

The name of the object.

getOutputDescription(self)

Get the description of the output field values.

Returns
outputDescriptionDescription

Description of the output field values.

getOutputDimension(self)

Get the dimension of the output field values.

Returns
d’int

Dimension d' of the output field values.

getOutputMesh(self)

Get the output mesh.

Returns
outputMeshMesh

The mesh \cM_{N'} of the output field.

setInputDescription(self, inputDescription)

Set the description of the input vector.

Parameters
inputDescriptionsequence of str

Description of the input vector.

setName(self, name)

Accessor to the object’s name.

Parameters
namestr

The name of the object.

setOutputDescription(self, outputDescription)

Set the description of the output field values.

Parameters
outputDescriptionsequence of str

Description of the output field values.