.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_calibration_bayesian_calibration_plot_bayesian_calibration_flooding.py: Bayesian calibration of the flooding model ========================================== Abstract -------- The goal of this example is to present the statistical hypotheses of the bayesian calibration of the :ref:`flooding model`. Parameters to calibrate ----------------------- The vector of parameters to calibrate is: .. math:: \theta = (K_s,Z_v,Z_m). The variables to calibrate are :math:`(K_s,Z_v,Z_m)` and are set to the following values: .. math:: K_s = 30, \qquad Z_v = 50, \qquad Z_m = 55. Observations ------------ In this section, we describe the statistical model associated with the :math:`n` observations. The errors of the water heights are associated with a gaussian distribution with a zero mean and a standard variation equal to: .. math:: \sigma=0.1. Therefore, the observed water heights are: .. math:: H_i = G(Q_i,K_s,Z_v,Z_m) + \epsilon_i for :math:`i=1,...,n` where .. math:: \epsilon \sim \mathcal{N}(0,\sigma^2) and we make the hypothesis that the observation errors are independent. We consider a sample size equal to: .. math:: n=20. The observations are the couples :math:`\{(Q_i,H_i)\}_{i=1,...,n}`, i.e. each observation is a couple made of the flowrate and the corresponding river height. Analysis -------- In this model, the variables :math:`Z_m` and :math:`Z_v` are not identifiables, since only the difference :math:`Z_m-Z_v` matters. Hence, calibrating this model requires some regularization. Generate the observations ------------------------- .. code-block:: default import numpy as np import openturns as ot ot.Log.Show(ot.Log.NONE) import openturns.viewer as viewer A basic implementation of the probabilistic model is available in the usecases module : .. code-block:: default from openturns.usecases import flood_model as flood_model fm = flood_model.FloodModel() We define the model :math:`g` which has 4 inputs and one output H. The nonlinear least squares does not take into account for bounds in the parameters. Therefore, we ensure that the output is computed whatever the inputs. The model fails into two situations: * if :math:`K_s<0`, * if :math:`Z_v-Z_m<0`. In these cases, we return an infinite number. .. code-block:: default def functionFlooding(X) : L = 5.0e3 B = 300.0 Q, K_s, Z_v, Z_m = X alpha = (Z_m - Z_v)/L if alpha < 0.0 or K_s <= 0.0: H = np.inf else: H = (Q/(K_s*B*np.sqrt(alpha)))**(3.0/5.0) return [H] .. code-block:: default g = ot.PythonFunction(4, 1, functionFlooding) g = ot.MemoizeFunction(g) g.setOutputDescription(["H (m)"]) We load the input distribution for :math:`Q`. .. code-block:: default Q = fm.Q Set the parameters to be calibrated. .. code-block:: default K_s = ot.Dirac(30.0) Z_v = ot.Dirac(50.0) Z_m = ot.Dirac(55.0) K_s.setDescription(["Ks (m^(1/3)/s)"]) Z_v.setDescription(["Zv (m)"]) Z_m.setDescription(["Zm (m)"]) We create the joint input distribution. .. code-block:: default inputRandomVector = ot.ComposedDistribution([Q, K_s, Z_v, Z_m]) Create a Monte-Carlo sample of the output H. .. code-block:: default nbobs = 20 inputSample = inputRandomVector.getSample(nbobs) outputH = g(inputSample) Generate the observation noise and add it to the output of the model. .. code-block:: default sigmaObservationNoiseH = 0.1 # (m) noiseH = ot.Normal(0.,sigmaObservationNoiseH) ot.RandomGenerator.SetSeed(0) sampleNoiseH = noiseH.getSample(nbobs) Hobs = outputH + sampleNoiseH Plot the Y observations versus the X observations. .. code-block:: default Qobs = inputSample[:,0] .. code-block:: default graph = ot.Graph("Observations","Q (m3/s)","H (m)",True) cloud = ot.Cloud(Qobs,Hobs) graph.add(cloud) view = viewer.View(graph) .. image:: /auto_calibration/bayesian_calibration/images/sphx_glr_plot_bayesian_calibration_flooding_001.png :alt: Observations :class: sphx-glr-single-img Setting the calibration parameters ---------------------------------- Define the parametric model :math:`z = f(x,\theta)` that associates each observation :math:`x_i` and values of the parameters :math:`\theta_i` to the parameters of the distribution of the corresponding observation: here :math:`z=(\mu, \sigma)` .. code-block:: default def fullModelPy(X): Q, K_s, Z_v, Z_m = X H = g(X)[0] sigmaH = 0.5 # (m^2) The standard deviation of the observation error. return [H,sigmaH] fullModel = ot.PythonFunction(4, 2, fullModelPy) model = ot.ParametricFunction(fullModel, [0], Qobs[0]) model .. raw:: html

ParametricEvaluation(class=PythonEvaluation name=OpenTURNSPythonFunction, parameters positions=[0], parameters=[x0 : 2752.94], input positions=[1,2,3])



Define the value of the reference values of the :math:`\theta` parameter. In the bayesian framework, this is called the mean of the *prior* gaussian distribution. In the data assimilation framework, this is called the *background*. .. code-block:: default KsInitial = 20. ZvInitial = 49. ZmInitial = 51. parameterPriorMean = ot.Point([KsInitial,ZvInitial,ZmInitial]) paramDim = parameterPriorMean.getDimension() Define the covariance matrix of the parameters :math:`\theta` to calibrate. .. code-block:: default sigmaKs = 5. sigmaZv = 1. sigmaZm = 1. .. code-block:: default parameterPriorCovariance = ot.CovarianceMatrix(paramDim) parameterPriorCovariance[0,0] = sigmaKs**2 parameterPriorCovariance[1,1] = sigmaZv**2 parameterPriorCovariance[2,2] = sigmaZm**2 parameterPriorCovariance .. raw:: html

[[ 25 0 0 ]
[ 0 1 0 ]
[ 0 0 1 ]]



Define the the prior distribution :math:`\pi(\underline{\theta})` of the parameter :math:`\underline{\theta}` .. code-block:: default prior = ot.Normal(parameterPriorMean,parameterPriorCovariance) prior.setDescription(['Ks', 'Zv', 'Zm']) prior .. raw:: html

Normal(mu = [20,49,51], sigma = [5,1,1], R = [[ 1 0 0 ]
[ 0 1 0 ]
[ 0 0 1 ]])



Define the distribution of observations :math:`\underline{y} | \underline{z}` conditional on model predictions. Note that its parameter dimension is the one of :math:`\underline{z}`, so the model must be adjusted accordingly. In other words, the input argument of the `setParameter` method of the conditional distribution must be equal to the dimension of the output of the `model`. Hence, we do not have to set the actual parameters: only the type of distribution is used. .. code-block:: default conditional = ot.Normal() conditional .. raw:: html

Normal(mu = 0, sigma = 1)



Proposal distribution: uniform. .. code-block:: default proposal = [ot.Uniform(-5., 5.),ot.Uniform(-1., 1.),ot.Uniform(-1., 1.)] proposal .. rst-class:: sphx-glr-script-out Out: .. code-block:: none [class=Uniform name=Uniform dimension=1 a=-5 b=5, class=Uniform name=Uniform dimension=1 a=-1 b=1, class=Uniform name=Uniform dimension=1 a=-1 b=1] Test the MCMC sampler --------------------- The MCMC sampler essentially computes the log-likelihood of the parameters. .. code-block:: default mymcmc = ot.MCMC(prior, conditional, model, Qobs, Hobs, parameterPriorMean) .. code-block:: default mymcmc.computeLogLikelihood(parameterPriorMean) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none -118.8899132627309 Test the Metropolis-Hastings sampler ------------------------------------ - Creation of the Random Walk Metropolis-Hastings (RWMH) sampler. .. code-block:: default initialState = parameterPriorMean .. code-block:: default RWMHsampler = ot.RandomWalkMetropolisHastings( prior, conditional, model, Qobs, Hobs, initialState, proposal) Tuning of the RWMH algorithm. Strategy of calibration for the random walk (trivial example: default). .. code-block:: default strategy = ot.CalibrationStrategyCollection(paramDim) RWMHsampler.setCalibrationStrategyPerComponent(strategy) Other parameters. .. code-block:: default RWMHsampler.setVerbose(True) RWMHsampler.setThinning(1) RWMHsampler.setBurnIn(200) Generate a sample from the posterior distribution of the parameters theta. .. code-block:: default sampleSize = 1000 sample = RWMHsampler.getSample(sampleSize) Look at the acceptance rate (basic checking of the efficiency of the tuning; value close to 0.2 usually recommended). .. code-block:: default RWMHsampler.getAcceptanceRate() .. raw:: html

[0.546667,0.619167,0.604167]



Build the distribution of the posterior by kernel smoothing. .. code-block:: default kernel = ot.KernelSmoothing() posterior = kernel.build(sample) Display prior vs posterior for each parameter. .. code-block:: default from openturns.viewer import View import pylab as pl fig = pl.figure(figsize=(12, 4)) for parameter_index in range(paramDim): graph = posterior.getMarginal(parameter_index).drawPDF() priorGraph = prior.getMarginal(parameter_index).drawPDF() priorGraph.setColors(['blue']) graph.add(priorGraph) graph.setLegends(['Posterior', 'Prior']) ax = fig.add_subplot(1, paramDim, parameter_index+1) _ = ot.viewer.View(graph, figure=fig, axes=[ax]) _ = fig.suptitle("Bayesian calibration") .. image:: /auto_calibration/bayesian_calibration/images/sphx_glr_plot_bayesian_calibration_flooding_002.png :alt: Bayesian calibration :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 1.339 seconds) .. _sphx_glr_download_auto_calibration_bayesian_calibration_plot_bayesian_calibration_flooding.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_bayesian_calibration_flooding.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_bayesian_calibration_flooding.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_