.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_numerical_methods_optimization_plot_optimization_nlopt.py: Optimization using NLopt ======================== In this example we are going to explore optimization using OpenTURNS' `NLopt `_ interface. .. code-block:: default from __future__ import print_function import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt import math as m ot.Log.Show(ot.Log.NONE) List available algorithms .. code-block:: default for algo in ot.NLopt.GetAlgorithmNames(): print(algo) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none AUGLAG AUGLAG_EQ GD_MLSL GD_MLSL_LDS GN_CRS2_LM GN_DIRECT GN_DIRECT_L GN_DIRECT_L_NOSCAL GN_DIRECT_L_RAND GN_DIRECT_L_RAND_NOSCAL GN_DIRECT_NOSCAL GN_ESCH GN_ISRES GN_MLSL GN_MLSL_LDS GN_ORIG_DIRECT GN_ORIG_DIRECT_L G_MLSL G_MLSL_LDS LD_AUGLAG LD_AUGLAG_EQ LD_CCSAQ LD_LBFGS LD_MMA LD_SLSQP LD_TNEWTON LD_TNEWTON_PRECOND LD_TNEWTON_PRECOND_RESTART LD_TNEWTON_RESTART LD_VAR1 LD_VAR2 LN_AUGLAG LN_AUGLAG_EQ LN_BOBYQA LN_COBYLA LN_NELDERMEAD LN_NEWUOA LN_NEWUOA_BOUND LN_PRAXIS LN_SBPLX More details on NLopt algorithms are available `here `_ . The optimization algorithm is instanciated from the NLopt name .. code-block:: default algo = ot.NLopt('LD_SLSQP') define the problem .. code-block:: default objective = ot.SymbolicFunction(['x1', 'x2'], ['100*(x2-x1^2)^2+(1-x1)^2']) inequality_constraint = ot.SymbolicFunction(['x1', 'x2'], ['x1-2*x2']) dim = objective.getInputDimension() bounds = ot.Interval([-3.] * dim, [5.] * dim) problem = ot.OptimizationProblem(objective) problem.setMinimization(True) problem.setInequalityConstraint(inequality_constraint) problem.setBounds(bounds) solve the problem .. code-block:: default algo.setProblem(problem) startingPoint = [0.0] * dim algo.setStartingPoint(startingPoint) algo.run() retrieve results .. code-block:: default result = algo.getResult() print('x^=', result.getOptimalPoint()) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none x^= [0.517441,0.258721] draw optimal value history .. code-block:: default graph = result.drawOptimalValueHistory() view = viewer.View(graph) plt.show() .. image:: /auto_numerical_methods/optimization/images/sphx_glr_plot_optimization_nlopt_001.png :alt: Optimal value history :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.083 seconds) .. _sphx_glr_download_auto_numerical_methods_optimization_plot_optimization_nlopt.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_optimization_nlopt.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_optimization_nlopt.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_