.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_probabilistic_modeling_distributions_plot_createYourOwnDist-vMB.py: Create your own distribution given its quantile function ======================================================== We want to create a distribution with CDF :math:`F` from the quantile function :math:`F^{-1}`. In order to implement this, we use the `CompositeDistribution `_ class. We know that the random variable :math:`X` is distributed according to :math:`F` if and only if :math:`U=F(X)` is distributed according to the uniform distribution in the :math:`[0,1]` interval, i.e. :math:`U=F(X) \sim \mathcal{U}(0,1)`. Hence, if :math:`U \sim \mathcal{U}(0,1)` then :math:`X=F^{-1}(U)` is distributed according to :math:`F`. In this example, we want to create a distribution with CDF :math:`F: \mathbb{R} \rightarrow [0,1] `parametrized by :math:`\rho > 1`: .. math:: F(x) = 1-e^{-\rho^x} \quad \forall x \in \mathbb{R}. The quantile function is :math:`F^{-1} : u \rightarrow [0,1]` and writes: .. math:: F^{-1}(u) = \dfrac{\log \left[ - \log (1-u) \right] }{\log(\rho)} \quad \forall u \in [0,1] Since :math:`U \sim \mathcal{U}(0,1)`, then :math:`(1-U)\sim\mathcal{U}(0,1)`. This is why we can simplify the expression and define the function :math:`G` such as: .. math:: G(u) = \dfrac{\log \left[ - \log u \right] }{\log(\rho)} \quad \forall u \in [0,1]. Then :math:`G(U)` is distributed according to the :math:`F` distribution. First, we import the useful librairies and we create the symbolic function :math:`G`. .. code-block:: default import openturns as ot from openturns.viewer import View Then, we create the :math:`G` function with :math:`\rho = 2.0`. To do this, we create a function which takes both :math:`y` and :math:`\rho` as inputs and returns :math:`G(u)`. Then the `g` function is defined as a `ParametricFunction` with a fixed value of :math:`\rho`. .. code-block:: default gWithParameter = ot.SymbolicFunction(["u", "rho"], ["log(-log(u)) / log(rho)"]) rho = 2.0 g = ot.ParametricFunction(gWithParameter, [1], [rho]) We define the distribution distF as the image through :math:`G` of the Uniform(0,1) distribution: .. code-block:: default distF = ot.CompositeDistribution(g, ot.Uniform(0.0, 1.0)) Now, we can draw its pdf, cdf, sample it,... .. code-block:: default g = distF.drawPDF() g.setTitle("A distribution based on the quantile function.") g.setLegendPosition("") view = View(g) view.ShowAll() .. image:: /auto_probabilistic_modeling/distributions/images/sphx_glr_plot_createYourOwnDist-vMB_001.png :alt: A distribution based on the quantile function. :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.074 seconds) .. _sphx_glr_download_auto_probabilistic_modeling_distributions_plot_createYourOwnDist-vMB.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_createYourOwnDist-vMB.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_createYourOwnDist-vMB.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_