.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_reliability_sensitivity_reliability_plot_probaSystemEvent.py: Time variant system reliability problem ======================================= The objective is to evaluate the outcrossing rate from a safe to a failure domain in a time variant reliability problem. We consider the following limit state function, defined as the difference between a degrading resistance :math:`r(t) = R - bt` and a time-varying load :math:`S(t)`: ..math: \begin{align*} g(t)= r(t) - S(t) = R - bt - S(t) \quad \forall t \in [0,T] \end{align*} The failure domaine is defined by: .. math:: g(t) \leq 0 which means that the resistance at :math:`t` is less thant the stress at :math:`t`. We propose the following probabilistic model: - :math:`R` is the initial resistance, and :math:`R \sim \mathcal{N}(\mu_R, \sigma_R)`; - :math:`b` is the deterioration rate of the resistance; it is deterministic; - :math:`S(\omega,t)` is the time-varying stress, which is modeled by a stationary Gaussian process of mean value :math:`\mu_S`, standard deviation :math:`\sigma_S` and a squared exponential covariance model :math:`C(s,t)`. The outcrossing rate from the safe to the failure domain at instant :math:`t` is defined by: .. math:: \nu^+(t) = \lim_{\Delta t \rightarrow 0+} \dfrac{\mathbb{P}\{ g(t) \ge 0 \cap g(t+\Delta t) \leq 0\} }{\Delta t} For each :math:`t`, we note the random variable :math:`Z_t = R - bt - S_t` where :math:`S_t = S(., t)`. To evaluate :math:`\nu^+(t)`, we need to consider the bivariate random vector :math:`(Z_t, Z_{t+\Delta t})`. The event :math:`\{ g(t) \geq 0 \cap g(t+\Delta t) <0\}` writes as the intersection of both events : - :math:`\mathcal{E}_t^1 = \{ Z_t \geq 0\}` and - :math:`\mathcal{E}_t^2 = \{ Z_{t+\Delta t} \leq 0\}`. The objective is to evaluate: .. math:: \mathbb{P}\{\mathcal{E}_t^1 \cap \mathcal{E}_t^2\} \quad \forall t \in [0,T] 1. Define some useful functions ------------------------------- We define the bivariate random vector :math:`Y_t = (bt + S_t, b(t+\Delta t) + S_{t+\Delta t})`. Here, :math:`Y_t` is a bivariate Normal random vector: - whith mean :math:`[bt, b(t+\delta t)]` and - whith covariance matrix :math:`\Sigma` defined by: ..math:: \begin{align*} \Sigma = \left( \begin{array}{cc} C(t, t) & C(t, t+\Delta t) \\ C(t, t+\Delta t) & C(t+\Delta t, t+\Delta t) \end{array} \right) \end{align*} This function buils :math:`Y_t =(Y_t^1, Y_t^2)`. .. code-block:: default def buildNormal(b, t, mu_S, covariance, delta_t = 1e-5): sigma = CovarianceMatrix(2) sigma[0, 0] = covariance(t, t)[0,0] sigma[0, 1] = covariance(t, t+delta_t)[0,0] sigma[1, 1] = covariance(t+delta_t, t+delta_t)[0,0] return Normal([b*t + mu_S, b*(t+delta_t) + mu_S], sigma) This function creates the trivariate random vector :math:`(R, Y_t^1, Y_t^2)` where :math:`R` is independant from :math:`(Y_t^1, Y_t^2)`. We need to create this random vector because both events :math:`\mathcal{E}_t^1` and :math:`\mathcal{E}_t^2` must be defined from the same random vector! .. code-block:: default def buildCrossing(b, t, mu_S, covariance, R, delta_t = 1e-5): normal = buildNormal(b, t, mu_S, covariance, delta_t) #return BlockIndependentDistribution([R, normal]): only from the 1.16 version! marg = [R, normal.getMarginal(0), normal.getMarginal(1)] cop = ComposedCopula([IndependentCopula(1), normal.getCopula()]) return ComposedDistribution(marg, cop) This function evaluates the probability using the Monte Carlo sampling. It defines the intersection event :math:`\mathcal{E}_t^1 \cap \mathcal{E}_t^2`. .. code-block:: default def computeCrossingProbability_MonteCarlo(b, t, mu_S, covariance, R, delta_t, n_block, n_iter, CoV): full = buildCrossing(b, t, mu_S, covariance, R, delta_t) X = RandomVector(full) f1 = SymbolicFunction(["R", "X1", "X2"], ["X1 - R"]) e1 = ThresholdEvent(CompositeRandomVector(f1, X), Less(), 0.0) f2 = SymbolicFunction(["R", "X1", "X2"], ["X2 - R"]) e2 = ThresholdEvent(CompositeRandomVector(f2, X), GreaterOrEqual(), 0.0) event = IntersectionEvent([e1, e2]) algo = ProbabilitySimulationAlgorithm(event, MonteCarloExperiment()) algo.setBlockSize(n_block) algo.setMaximumOuterSampling(n_iter) algo.setMaximumCoefficientOfVariation(CoV) algo.run() return algo.getResult().getProbabilityEstimate() / delta_t This function evaluates the probability using the Low Discrepancy sampling. .. code-block:: default def computeCrossingProbability_QMC(b, t, mu_S, covariance, R, delta_t, n_block, n_iter, CoV): full = buildCrossing(b, t, mu_S, covariance, R, delta_t) X = RandomVector(full) f1 = SymbolicFunction(["R", "X1", "X2"], ["X1 - R"]) e1 = ThresholdEvent(CompositeRandomVector(f1, X), Less(), 0.0) f2 = SymbolicFunction(["R", "X1", "X2"], ["X2 - R"]) e2 = ThresholdEvent(CompositeRandomVector(f2, X), GreaterOrEqual(), 0.0) event = IntersectionEvent([e1, e2]) algo = ProbabilitySimulationAlgorithm(event, LowDiscrepancyExperiment(SobolSequence(X.getDimension()), n_block, False)) algo.setBlockSize(n_block) algo.setMaximumOuterSampling(n_iter) algo.setMaximumCoefficientOfVariation(CoV) algo.run() return algo.getResult().getProbabilityEstimate() / delta_t This function evaluates the probability using the FORM algorithm for event systems.. .. code-block:: default def computeCrossingProbability_FORM(b, t, mu_S, covariance, R, delta_t): full = buildCrossing(b, t, mu_S, covariance, R, delta_t) X = RandomVector(full) f1 = SymbolicFunction(["R", "X1", "X2"], ["X1 - R"]) e1 = ThresholdEvent(CompositeRandomVector(f1, X), Less(), 0.0) f2 = SymbolicFunction(["R", "X1", "X2"], ["X2 - R"]) e2 = ThresholdEvent(CompositeRandomVector(f2, X), GreaterOrEqual(), 0.0) event = IntersectionEvent([e1, e2]) algo = SystemFORM(SQP(), event, X.getMean()) algo.run() return algo.getResult().getEventProbability() / delta_t 2. Evaluate the probability --------------------------- .. code-block:: default from openturns import * from openturns.viewer import View from math import sqrt First, fix some parameters: :math:`(\mu_R, \sigma_R, \mu_S, \sigma_S, \Delta t, T, b)` and the covariance model wich is the Squared Exponential model. Be careful to the parameter :math:`\Delta t` which is of great importance: if it is too small, the simulation methods have problems to converge because the correlation rate is too high between the instants :math:`t` and :math:`t+\Delta t`. We advice to take :math:`\Delta t \simeq 10^{-1}`. .. code-block:: default mu_S = 3.0 sigma_S = 0.5 l = 10 b = 0.01 mu_R = 5.0 sigma_R = 0.3 R = Normal(mu_R, sigma_R) covariance = SquaredExponential([l/sqrt(2)], [sigma_S]) t0 = 0.0 t1 = 50.0 N = 26 # Get all the time steps t times = RegularGrid(t0, (t1 - t0) / (N - 1.0), N).getVertices() delta_t = 1e-1 Use all the methods previously described: - Monte Carlo: values in values_MC - Low discrepancy suites: values in values_QMC - FORM: values in values_FORM .. code-block:: default values_MC = list() values_QMC = list() values_FORM = list() for tick in times: values_MC.append(computeCrossingProbability_MonteCarlo(b, tick[0], mu_S, covariance, R, delta_t, 2**12, 2**3, 1e-2)) values_QMC.append(computeCrossingProbability_QMC(b, tick[0], mu_S, covariance, R, delta_t, 2**12, 2**3, 1e-2)) values_FORM.append(computeCrossingProbability_FORM(b, tick[0], mu_S, covariance, R, delta_t)) .. code-block:: default print('Values MC = ', values_MC) print('Values QMC = ', values_QMC) print('Values FORM = ', values_FORM) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none Values MC = [0.0, 0.0, 0.0, 0.00030517578125, 0.0, 0.0, 0.00030517578125, 0.0, 0.00030517578125, 0.0, 0.00030517578125, 0.0, 0.00030517578125, 0.00030517578125, 0.0006103515625, 0.0006103515625, 0.0, 0.0, 0.0006103515625, 0.00091552734375, 0.00030517578125, 0.0, 0.001220703125, 0.00030517578125, 0.0006103515625, 0.0006103515625] Values QMC = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0006103515625, 0.0, 0.0006103515625, 0.0, 0.0, 0.0, 0.00030517578125, 0.00030517578125, 0.0, 0.00030517578125, 0.0, 0.00091552734375, 0.0006103515625, 0.0, 0.00030517578125, 0.0, 0.0006103515625, 0.001220703125, 0.00091552734375, 0.0006103515625] Values FORM = [6.407247221452685e-05, 7.202731340860951e-05, 8.087457491593016e-05, 9.070179169300293e-05, 0.0001016035263802752, 0.00011368175169091608, 0.00012704623305297141, 0.00014181490835112135, 0.00015811426182631293, 0.00017607968850349097, 0.0001958558454373012, 0.00021759698560569734, 0.0002414672698574692, 0.00026764105252706364, 0.0002963031350828803, 0.0003276489830651007, 0.00036188490016252284, 0.00039922815388919713, 0.0004399070467586194, 0.00048416092659680056, 0.0005322401297909951, 0.0005844058510196042, 0.0006409299329987239, 0.0007020945699345352, 0.0007681919182910387, 0.0008395236089949951] Draw the graphs! .. code-block:: default g = Graph() g.setAxes(True) g.setGrid(True) c = Curve(times, [[p] for p in values_MC]) g.add(c) c = Curve(times, [[p] for p in values_QMC]) g.add(c) c = Curve(times, [[p] for p in values_FORM]) g.add(c) g.setLegends(["MC", "QMC", "FORM"]) g.setColors(["red", "blue", 'black']) g.setLegendPosition("topleft") g.setXTitle("t") g.setYTitle("Outcrossing rate") Show(g) .. image:: /auto_reliability_sensitivity/reliability/images/sphx_glr_plot_probaSystemEvent_001.png :alt: plot probaSystemEvent :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 5.927 seconds) .. _sphx_glr_download_auto_reliability_sensitivity_reliability_plot_probaSystemEvent.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_probaSystemEvent.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_probaSystemEvent.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_