.. only:: html .. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_auto_reliability_sensitivity_sensitivity_analysis_plot_sensitivity_ancova.py: ANCOVA sensitivity indices ========================== In this example we are going to use the ANCOVA decomposition to estimate sensitivity indices from a model with correlated inputs. ANCOVA allows to estimate the Sobol' indices, and thanks to a functional decomposition of the model it allows to separate the part of variance explained by a variable itself from the part of variance explained by a correlation which is due to its correlation with the other input parameters. In theory, ANCOVA indices range is :math:`\left[0; 1\right]` ; the closer to 1 the index is, the greater the model response sensitivity to the variable is. These indices are a sum of a physical part :math:`S_i^U` and correlated part :math:`S_i^C`. The correlation has a weak influence on the contribution of :math:`X_i`, if :math:`|S_i^C|` is low and :math:`S_i` is close to :math:`S_i^U`. On the contrary, the correlation has a strong influence on the contribution of the input :math:`X_i`, if :math:`|S_i^C|` is high and :math:`S_i` is close to :math:`S_i^C`. The ANCOVA indices :math:`S_i` evaluate the importance of one variable at a time (:math:`d` indices stored, with :math:`d` the input dimension of the model). The :math:`d` uncorrelated parts of variance of the output due to each input :math:`S_i^U` and the effects of the correlation are represented by the indices resulting from the subtraction of these two previous lists. To evaluate the indices, the library needs of a functional chaos result approximating the model response with uncorrelated inputs and a sample with correlated inputs used to compute the real values of the output. .. code-block:: default from __future__ import print_function import openturns as ot import openturns.viewer as viewer from matplotlib import pylab as plt ot.Log.Show(ot.Log.NONE) Create the model (x1,x2) --> (y) = (4.*x1+5.*x2) .. code-block:: default model = ot.SymbolicFunction(['x1', 'x2'], ['4.*x1+5.*x2']) Create the input independent joint distribution .. code-block:: default distribution = ot.Normal(2) distribution.setDescription(['X1', 'X2']) Create the correlated input distribution .. code-block:: default S = ot.CorrelationMatrix(2) S[1, 0] = 0.3 R = ot.NormalCopula.GetCorrelationFromSpearmanCorrelation(S) copula = ot.NormalCopula(R) distribution_corr = ot.ComposedDistribution([ot.Normal()] * 2, copula) ANCOVA needs a functional decomposition of the model .. code-block:: default enumerateFunction = ot.LinearEnumerateFunction(2) productBasis = ot.OrthogonalProductPolynomialFactory([ot.HermiteFactory()]*2, enumerateFunction) adaptiveStrategy = ot.FixedStrategy(productBasis, enumerateFunction.getStrataCumulatedCardinal(4)) samplingSize = 250 projectionStrategy = ot.LeastSquaresStrategy(ot.MonteCarloExperiment(samplingSize)) algo = ot.FunctionalChaosAlgorithm(model, distribution, adaptiveStrategy, projectionStrategy) algo.run() result = ot.FunctionalChaosResult(algo.getResult()) Create the input sample taking account the correlation .. code-block:: default size = 2000 sample = distribution_corr.getSample(size) Perform the decomposition .. code-block:: default ancova = ot.ANCOVA(result, sample) # Compute the ANCOVA indices (first order and uncorrelated indices are computed together) indices = ancova.getIndices() # Retrieve uncorrelated indices uncorrelatedIndices = ancova.getUncorrelatedIndices() # Retrieve correlated indices: correlatedIndices = indices - uncorrelatedIndices Print Sobol' indices, the physical part, and the correlation part .. code-block:: default print("ANCOVA indices ", indices) print("ANCOVA uncorrelated indices ", uncorrelatedIndices) print("ANCOVA correlated indices ", correlatedIndices) .. rst-class:: sphx-glr-script-out Out: .. code-block:: none ANCOVA indices [0.415068,0.584932] ANCOVA uncorrelated indices [0.297552,0.467416] ANCOVA correlated indices [0.117516,0.117516] .. code-block:: default graph = ot.SobolIndicesAlgorithm.DrawImportanceFactors(indices, distribution.getDescription(), 'ANCOVA indices (Sobol\')') view = viewer.View(graph) .. image:: /auto_reliability_sensitivity/sensitivity_analysis/images/sphx_glr_plot_sensitivity_ancova_001.png :alt: ANCOVA indices (Sobol') :class: sphx-glr-single-img .. code-block:: default graph = ot.SobolIndicesAlgorithm.DrawImportanceFactors(uncorrelatedIndices, distribution.getDescription(), 'ANCOVA uncorrelated indices\n(part of physical variance in the model)') view = viewer.View(graph) .. image:: /auto_reliability_sensitivity/sensitivity_analysis/images/sphx_glr_plot_sensitivity_ancova_002.png :alt: ANCOVA uncorrelated indices (part of physical variance in the model) :class: sphx-glr-single-img .. code-block:: default graph = ot.SobolIndicesAlgorithm.DrawImportanceFactors(correlatedIndices, distribution.getDescription(), 'ANCOVA correlated indices\n(part of variance due to the correlation)') view = viewer.View(graph) plt.show() .. image:: /auto_reliability_sensitivity/sensitivity_analysis/images/sphx_glr_plot_sensitivity_ancova_003.png :alt: ANCOVA correlated indices (part of variance due to the correlation) :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 0.130 seconds) .. _sphx_glr_download_auto_reliability_sensitivity_sensitivity_analysis_plot_sensitivity_ancova.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_sensitivity_ancova.py ` .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_sensitivity_ancova.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_