.. _taylor_expansion: Linear and Quadratic Taylor Expansions -------------------------------------- | The approximation of the model response :math:`\underline{y} = h(\underline{x})` around a specific set :math:`\underline{x}_0 = (x_{0,1},\dots,x_{0,n_{X}})` of input parameters may be of interest. One may then substitute :math:`h` for its Taylor expansion at point :math:`\underline{x}_0`. Hence :math:`h` is replaced with a first or second-order polynomial :math:`\widehat{h}` whose evaluation is inexpensive, allowing the analyst to apply the uncertainty propagation methods. | We consider the first and second order Taylor expansions around :math:`\ux=\underline{x}_0`. .. math:: \underline{y} \, \, \approx \, \, \widehat{h}(\underline{x}) \, \, = \, \, h(\underline{x}_0) \, + \, \sum_{i=1}^{n_{X}} \; \frac{\partial h}{\partial x_i}(\underline{x}_0).\left(x_i - x_{0,i} \right) Introducing a vector notation, the previous equation rewrites: .. math:: \underline{y} \, \, \approx \, \, \underline{y}_0 \, + \, \underline{\underline{L}} \: \left(\underline{x}-\underline{x}_0\right) where: - :math:`\underline{y_0} = (y_{0,1} , \dots, y_{0,n_Y})^{\textsf{T}}= h(\underline{x}_0)` is the vector model response evaluated at :math:`\underline{x}_0`; - :math:`\underline{x}` is the current set of input parameters; - :math:`\underline{\underline{L}} = \left( \frac{\partial y_{0,j}}{\partial x_i} \, \, , \, \, i=1,\ldots, n_X \, \, , \, \, j=1, \ldots, n_Y \right)` is the transposed Jacobian matrix evaluated at :math:`\underline{x}_0`. .. math:: \begin{aligned} \underline{y} \, \, \approx \, \, \widehat{h}(\underline{x}) \, \, = \, \, h(\underline{x}_0) \, + \, \sum_{i=1}^{n_{X}} \; \frac{\partial h}{\partial x_i}(\underline{x}_0).\left(x_i - x_{0,i} \right) \, + \, \frac{1}{2} \; \sum_{i,j=1}^{n_X} \; \frac{\partial^2 h}{\partial x_i \partial x_j}(\underline{x}_0).\left(x_i - x_{0,i} \right).\left(x_j - x_{0,j} \right) \end{aligned} Introducing a vector notation, the previous equation rewrites: .. math:: \underline{y} \, \, \approx \, \, \underline{y}_0 \, + \, \underline{\underline{L}} \: \left(\underline{x}-\underline{x}_0\right) \, + \, \frac{1}{2} \; \left\langle \left\langle\underline{\underline{\underline{Q}}}\:,\underline{x}-\underline{x}_0 \right\rangle,\:\underline{x}-\underline{x}_0 \right\rangle where :math:`\underline{\underline{Q}} = \left\{ \frac{\partial^2 y_{0,k}}{\partial x_i \partial x_j} \, \, , \, \, i,j=1,\ldots, n_X \, \, , \, \, k=1, \ldots, n_Y \right\}` is the transposed Hessian matrix. .. topic:: API: - See :class:`~openturns.LinearTaylor` - See :class:`~openturns.QuadraticTaylor` .. topic:: Examples: - See :doc:`/auto_meta_modeling/general_purpose_metamodels/plot_taylor_approximation`