.. _parametric_spectral_model: Parametric spectral density functions ===================================== | Let :math:`X: \Omega \times \cD \rightarrow \Rset^d` be a multivariate stationary normal process of dimension :math:`d`. We only treat here the case where the domain is of dimension 1: :math:`\cD \in \Rset` (:math:`n=1`). | If the process is continuous, then :math:`\cD=\Rset`. In the discrete case, :math:`\cD` is a lattice. | :math:`X` is supposed to be a second order process with zero mean and we suppose that its spectral density function :math:`S : \Rset \rightarrow \mathcal{H}^+(d)` defined in :eq:`specdensFunc` exists. :math:`\mathcal{H}^+(d) \in \mathcal{M}_d(\Cset)` is the set of :math:`d`-dimensional positive definite hermitian matrices. | This use case illustrates how the User can create a density spectral function from parametric models. The library proposes the *Cauchy spectral model* as a parametric model for the spectral density function :math:`S`. **The Cauchy spectral model** Its is associated to the Exponential covariance model. The Cauchy spectral model is defined by: .. math:: :label: cauchyModel S_{ij}(f) = \displaystyle \frac{4R_{ij}a_ia_j(\lambda_i+ \lambda_j)}{(\lambda_i+ \lambda_j)^2 + (4\pi f)^2}, \quad \forall (i,j) \leq d where :math:`\mat{R}`, :math:`\vect{a}` and :math:`\vect{\lambda}` are the parameters of the Exponential covariance model defined in section [ParamStationaryCovarianceFunction]. The relation :eq:`cauchyModel` can be explained with the spatial covariance function :math:`\mat{C}^{spat}(\tau)` defined in :eq:`relRA`. .. topic:: API: - See :class:`~openturns.CauchyModel` .. topic:: Examples: - See :doc:`/auto_probabilistic_modeling/stochastic_processes/plot_parametric_spectral_density`